An approximation algorithm for the number of zeros or arbitrary polynomials over GF(q)

D. Grigoriev, Marek Karpinski
{"title":"An approximation algorithm for the number of zeros or arbitrary polynomials over GF(q)","authors":"D. Grigoriev, Marek Karpinski","doi":"10.1109/SFCS.1991.185433","DOIUrl":null,"url":null,"abstract":"The authors design the first polynomial time (for an arbitrary and fixed field GF(q)) ( in , delta )-approximation algorithm for the number of zeros of arbitrary polynomial f(x/sub 1/. . . x/sub n/) over GF(q). It gives the first efficient method for estimating the number of zeros and nonzeros of multivariate polynomials over small finite fields other than GF(2) (like GF(3)), the case important for various circuit approximation techniques. The algorithm is based on the estimation of the number of zeros of an arbitrary polynomial f(x/sub 1/. . .,x/sub n/) over GF(q) in the function of the number m of its terms. The bounding ratio is proved to be m/sup (q-1)/log/sup q/.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The authors design the first polynomial time (for an arbitrary and fixed field GF(q)) ( in , delta )-approximation algorithm for the number of zeros of arbitrary polynomial f(x/sub 1/. . . x/sub n/) over GF(q). It gives the first efficient method for estimating the number of zeros and nonzeros of multivariate polynomials over small finite fields other than GF(2) (like GF(3)), the case important for various circuit approximation techniques. The algorithm is based on the estimation of the number of zeros of an arbitrary polynomial f(x/sub 1/. . .,x/sub n/) over GF(q) in the function of the number m of its terms. The bounding ratio is proved to be m/sup (q-1)/log/sup q/.<>
GF(q)上任意多项式的零个数近似算法
作者设计了第一个多项式时间(对于任意固定域GF(q)) (in, delta)-任意多项式f(x/下标1/…)的零个数近似算法。x/ (n/) / GF(q)它给出了除GF(2)(如GF(3))以外的小有限域上多元多项式的零和非零数估计的第一种有效方法,这种情况对于各种电路近似技术都很重要。该算法基于对任意多项式f(x/下标1/…,x/下标n/) / GF(q)的零个数的估计,其项数为m。证明了边界比为m/sup (q-1)/log/sup q/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信