Computational Analyses of Flow and Heat Transfer at 60° Position of 180° Curved Duct of Square Cross-Section

Mourad Mokeddem, H. Laidoudi, M. Bouzit
{"title":"Computational Analyses of Flow and Heat Transfer at 60° Position of 180° Curved Duct of Square Cross-Section","authors":"Mourad Mokeddem, H. Laidoudi, M. Bouzit","doi":"10.4028/www.scientific.net/DF.26.53","DOIUrl":null,"url":null,"abstract":"3D computational analyses are achieved to predict seriously the influences of thermal buoyancy strength and Dean number on Dean vortices, flow behavior and the rate heat transfer through 180° curved channel of square cross-sectional form. The work shows many results, so this paper emphasizes only on the results of 60° cross-sectional position of the bend duct. The principal partial equations of continuity, momentum and energy are considering in three dimensions under the following assumptions: flow is incompressible and laminar, and it is solved in steady-state. The aforementioned equations are subjected to suitable boundary conditions under following range as: Dean number of De = 125 to 150, Richardson number of Ri = 0 to 2 at fixed value of Prandtl number Pr = 1. The principal results of this work are illustrated as streamline and isotherm contours to draw to flow patterns and temperature distributions respectively. The axial velocity profile is shown versus above conditions, the local Nusselt number is also presented along the wall of 60° cross-sectional position. The results show that the thermal buoyancy can balance the effect of centrifugal force of fluid particles at the angular position of 60°.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.26.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

3D computational analyses are achieved to predict seriously the influences of thermal buoyancy strength and Dean number on Dean vortices, flow behavior and the rate heat transfer through 180° curved channel of square cross-sectional form. The work shows many results, so this paper emphasizes only on the results of 60° cross-sectional position of the bend duct. The principal partial equations of continuity, momentum and energy are considering in three dimensions under the following assumptions: flow is incompressible and laminar, and it is solved in steady-state. The aforementioned equations are subjected to suitable boundary conditions under following range as: Dean number of De = 125 to 150, Richardson number of Ri = 0 to 2 at fixed value of Prandtl number Pr = 1. The principal results of this work are illustrated as streamline and isotherm contours to draw to flow patterns and temperature distributions respectively. The axial velocity profile is shown versus above conditions, the local Nusselt number is also presented along the wall of 60° cross-sectional position. The results show that the thermal buoyancy can balance the effect of centrifugal force of fluid particles at the angular position of 60°.
180°方截面弯曲风管60°位置流动传热计算分析
通过三维计算分析,较好地预测了热浮力强度和迪安数对迪安涡、流动特性和180°方形截面弯曲通道换热速率的影响。由于工作结果较多,本文只着重讨论弯管60°截面位置的结果。连续性、动量和能量的主偏方程是在三维空间中考虑的,假设流动是不可压缩的和层流的,并在稳态下求解。上述方程在下述范围内具有合适的边界条件:在Prandtl数Pr = 1的定值下,De的Dean数为125 ~ 150,Ri的Richardson数为0 ~ 2。本工作的主要结果分别用流线和等温等温线来表示流动模式和温度分布。给出了在上述条件下的轴向速度分布,并给出了沿壁面60°横截面位置的局部努塞尔数。结果表明,热浮力可以平衡60°角处流体颗粒离心力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信