Perbandingan Algoritma Naive Bayes dan Support Vector Machine dalam Seleksi Kelulusan Pemberkasan Beasiswa BPP-PPA Fakultas Teknik Universitas Negeri Jakarta

Fakhriyani, Widodo, Bambang Prasetya Adhi
{"title":"Perbandingan Algoritma Naive Bayes dan Support Vector Machine dalam Seleksi Kelulusan Pemberkasan Beasiswa BPP-PPA Fakultas Teknik Universitas Negeri Jakarta","authors":"Fakhriyani, Widodo, Bambang Prasetya Adhi","doi":"10.21009/pinter.2.2.4","DOIUrl":null,"url":null,"abstract":"Beasiswa merupakan salah satu program untuk membantu meringankan mahasiswa dalam membayar uang kuliah, namun sering terjadi kesalahan dalam pemberian beasiswa tersebut karena masih dilakukan secara manual dan tidak adanya kriteria yang jelas bagaimana seorang mahasiswa dapat memperoleh beasiswa. Untuk mengantisipasi agar tidak terjadinya kesalahan dalam pemberian beasiswa maka dibutuhkan sebuah Sistem Pendukung Keputusan, namun sebelum dilakukan pembuatan sistem tersebut dirasa perlu untuk mengetahui algoritma terbaik untuk menyeleksi berkas beasiswa tersebut. Penelitian ini menggunakan duaalgoritma Data Mining yaitu algoritma Naïve Bayes dan Support Vector Machine. Naïve Bayes merupakan metode pengklasifikasian yang dapat digunakan untuk memprediksi probabilitas keanggotaan suatu class berdasarkan pengalaman di masa sebelumnya dengan kondisi antar atribut saling bebas. Support Vector Machine adalah sebuah metode prediksi dalam klasifikasi yang dapat dilakukan pada kasus yang secara linier dapat dipisahkan, maupun non-linier dengan menggunakan konsep kernel pada ruang kerja berdimensi tinggi.Data mahasiswa yang lulus dan tidak lulus seleksi berkas beasiswa BPP-PPA akan diolah menggunakan algoritma Naïve Bayes dan Support Vector Machine. Setelah diklasifikasi kedua algoritma tersebut akan dihitung hasil akurasinya menggunakan K-fold Cross Validation. Berdasarkan hasil contoh kasus seleksi menunjukan bahwa hasil perhitungan akurasi algoritma Naïve Bayes adalah 0.7542, sedangkan hasil akurasi algoritma Support Vector Machine adalah 0.99. Kedua sistem telah mampu menangani proses penyeleksiankelulusan pemberkasan beasiswa BPP-PPA Fakultas Teknik Universitas Negeri Jakarta. Algoritma Support Vector Machine menghasilkan rata-rata akurasi 0.99 yang mendekati 1, maka algoritma tersebut dinilai lebih akurat dan direkomendasikan untuk penelitian selanjutnya.","PeriodicalId":258953,"journal":{"name":"PINTER : Jurnal Pendidikan Teknik Informatika dan Komputer","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PINTER : Jurnal Pendidikan Teknik Informatika dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21009/pinter.2.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Beasiswa merupakan salah satu program untuk membantu meringankan mahasiswa dalam membayar uang kuliah, namun sering terjadi kesalahan dalam pemberian beasiswa tersebut karena masih dilakukan secara manual dan tidak adanya kriteria yang jelas bagaimana seorang mahasiswa dapat memperoleh beasiswa. Untuk mengantisipasi agar tidak terjadinya kesalahan dalam pemberian beasiswa maka dibutuhkan sebuah Sistem Pendukung Keputusan, namun sebelum dilakukan pembuatan sistem tersebut dirasa perlu untuk mengetahui algoritma terbaik untuk menyeleksi berkas beasiswa tersebut. Penelitian ini menggunakan duaalgoritma Data Mining yaitu algoritma Naïve Bayes dan Support Vector Machine. Naïve Bayes merupakan metode pengklasifikasian yang dapat digunakan untuk memprediksi probabilitas keanggotaan suatu class berdasarkan pengalaman di masa sebelumnya dengan kondisi antar atribut saling bebas. Support Vector Machine adalah sebuah metode prediksi dalam klasifikasi yang dapat dilakukan pada kasus yang secara linier dapat dipisahkan, maupun non-linier dengan menggunakan konsep kernel pada ruang kerja berdimensi tinggi.Data mahasiswa yang lulus dan tidak lulus seleksi berkas beasiswa BPP-PPA akan diolah menggunakan algoritma Naïve Bayes dan Support Vector Machine. Setelah diklasifikasi kedua algoritma tersebut akan dihitung hasil akurasinya menggunakan K-fold Cross Validation. Berdasarkan hasil contoh kasus seleksi menunjukan bahwa hasil perhitungan akurasi algoritma Naïve Bayes adalah 0.7542, sedangkan hasil akurasi algoritma Support Vector Machine adalah 0.99. Kedua sistem telah mampu menangani proses penyeleksiankelulusan pemberkasan beasiswa BPP-PPA Fakultas Teknik Universitas Negeri Jakarta. Algoritma Support Vector Machine menghasilkan rata-rata akurasi 0.99 yang mendekati 1, maka algoritma tersebut dinilai lebih akurat dan direkomendasikan untuk penelitian selanjutnya.
在雅加达州立大学工程学院的bppp - ppa奖学金选择中,Naive Bayes和Support Machine比较了Naive Bayes和Support Machine
奖学金是帮助学生支付学费的项目之一,但奖学金的发放往往是错误的,因为它仍然是手工完成的,没有明确的标准,学生如何获得奖学金。预测奖学金不会出错需要一个支持决策系统,但在创建该系统之前,有必要确定选择该奖学金文件的最佳算法。该研究使用两种数据挖掘算法——天真贝斯算法和支持矢量引擎。Naive Bayes是一种分类方法,可以根据过去的经验来预测一个类成员的概率,这些体验都是基于自由共享属性的条件。支撑矢量机是一种分类预测方法,可以对高维工作空间的内核概念在线性或非线性中进行。通过不通过bppp - ppa奖学金选择文件的学生数据将使用Naive Bayes算法和Vector Machine支持系统进行处理。在对这两种算法进行分类后,将计算它们使用K-fold交叉验证的准确性。根据选择案例的例子,计算出Naive Bayes算法的准确性为0.7542,而支持向量机器的算法的准确性为0.99。这两种制度都成功地处理了雅加达州立大学工程学院的bppp - ppa奖学金筛选过程。支持算法机的平均准确率为接近1的0.99,因此对该算法进行了更准确的评估,并为未来的研究推荐了数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信