Predicting Authoritarian Crackdowns: A Machine Learning Approach

Julian TszKin Chan, Weifeng Zhong
{"title":"Predicting Authoritarian Crackdowns: A Machine Learning Approach","authors":"Julian TszKin Chan, Weifeng Zhong","doi":"10.2139/ssrn.3545999","DOIUrl":null,"url":null,"abstract":"We have developed a quantitative indicator to predict if and when a series of protests in China, such as the one that began in Hong Kong in 2019, will be met with a Tiananmen-like crackdown. The indicator takes as input protest-related articles published in the People’s Daily—the official newspaper of the Communist Party of China. We use a set of machine learning techniques to detect the buildup in the articles of negative propaganda against the protesters, and the method generates a daily mapping between the current date in the Hong Kong protest timeline and the “as if” date in the Tiananmen protest timeline. We call this counterfactual date the Policy Change Index for Crackdown (PCI-Crackdown) for the 2019 Hong Kong protests, showing how close in time it is to the June 4, 1989, crackdown in Tiananmen Square.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3545999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We have developed a quantitative indicator to predict if and when a series of protests in China, such as the one that began in Hong Kong in 2019, will be met with a Tiananmen-like crackdown. The indicator takes as input protest-related articles published in the People’s Daily—the official newspaper of the Communist Party of China. We use a set of machine learning techniques to detect the buildup in the articles of negative propaganda against the protesters, and the method generates a daily mapping between the current date in the Hong Kong protest timeline and the “as if” date in the Tiananmen protest timeline. We call this counterfactual date the Policy Change Index for Crackdown (PCI-Crackdown) for the 2019 Hong Kong protests, showing how close in time it is to the June 4, 1989, crackdown in Tiananmen Square.
预测专制镇压:一种机器学习方法
我们已经制定了一个量化指标来预测中国的一系列抗议活动,比如2019年在香港开始的抗议活动,是否以及何时会遭到类似天安门事件的镇压。该指标以中国共产党的官方报纸《人民日报》上发表的与抗议活动有关的文章为输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信