On the Exploitation of Hidden Markov Models to Improve Location-Based Temporal Segmentation of Egocentric Videos

Antonino Furnari, S. Battiato, G. Farinella
{"title":"On the Exploitation of Hidden Markov Models to Improve Location-Based Temporal Segmentation of Egocentric Videos","authors":"Antonino Furnari, S. Battiato, G. Farinella","doi":"10.1145/3080538.3080539","DOIUrl":null,"url":null,"abstract":"Wearable cameras allow to easily acquire long and unstructured egocentric videos. In this context, temporal video segmentation methods can be useful to improve indexing, retrieval and summarization of such content. While past research investigated methods for temporal segmentation of egocentric videos according to different criteria (e.g., motion, location or appearance), many of them do not explicitly enforce any form of temporal coherence. Moreover, evaluations have been generally performed using frame-based measures, which only account for the overall correctness of predicted frames, overlooking the structure of the produced segmentation. In this paper, we investigate how a Hidden Markov Model based on an ad-hoc transition matrix can be exploited to obtain a more accurate segmentation from frame-based predictions in the context of location-based segmentation of egocentric videos. We introduce a segment-based evaluation measure which strongly penalizes over-segmented and under-segmented results. Experiments show that the exploitation of a Hidden Markov Model for temporal smoothing greatly improves temporal segmentation results and outperforms current video segmentation methods designed for both third-person and first-person videos.","PeriodicalId":126678,"journal":{"name":"Proceedings of the 2017 Workshop on Wearable MultiMedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Workshop on Wearable MultiMedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3080538.3080539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wearable cameras allow to easily acquire long and unstructured egocentric videos. In this context, temporal video segmentation methods can be useful to improve indexing, retrieval and summarization of such content. While past research investigated methods for temporal segmentation of egocentric videos according to different criteria (e.g., motion, location or appearance), many of them do not explicitly enforce any form of temporal coherence. Moreover, evaluations have been generally performed using frame-based measures, which only account for the overall correctness of predicted frames, overlooking the structure of the produced segmentation. In this paper, we investigate how a Hidden Markov Model based on an ad-hoc transition matrix can be exploited to obtain a more accurate segmentation from frame-based predictions in the context of location-based segmentation of egocentric videos. We introduce a segment-based evaluation measure which strongly penalizes over-segmented and under-segmented results. Experiments show that the exploitation of a Hidden Markov Model for temporal smoothing greatly improves temporal segmentation results and outperforms current video segmentation methods designed for both third-person and first-person videos.
利用隐马尔可夫模型改进基于位置的自我中心视频时间分割
可穿戴相机可以轻松获取长而非结构化的以自我为中心的视频。在这种情况下,时间视频分割方法可以用于改进这些内容的索引、检索和摘要。虽然过去的研究根据不同的标准(例如,运动,位置或外观)调查了以自我为中心的视频的时间分割方法,但其中许多方法没有明确地强制执行任何形式的时间一致性。此外,评估通常使用基于帧的度量来执行,它只考虑预测帧的总体正确性,而忽略了生成分割的结构。在本文中,我们研究了如何利用基于ad-hoc转移矩阵的隐马尔可夫模型,在基于位置的自我中心视频分割的背景下,从基于帧的预测中获得更准确的分割。我们引入了一种基于分段的评估方法,对过度分段和未分段的结果进行强烈的惩罚。实验表明,利用隐马尔可夫模型进行时间平滑大大改善了时间分割结果,并且优于当前针对第三人称和第一人称视频设计的视频分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信