A Deep Generative Recommendation Method for Unbiased Learning from Implicit Feedback

SHASHANK GUPTA, Harrie Oosterhuis, M. de Rijke
{"title":"A Deep Generative Recommendation Method for Unbiased Learning from Implicit Feedback","authors":"SHASHANK GUPTA, Harrie Oosterhuis, M. de Rijke","doi":"10.1145/3578337.3605114","DOIUrl":null,"url":null,"abstract":"Variational autoencoders (VAEs) are the state-of-the-art model for recommendation with implicit feedback signals. Unfortunately, implicit feedback suffers from selection bias, e.g., popularity bias, position bias, etc., and as a result, training from such signals produces biased recommendation models. Existing methods for debiasing the learning process have not been applied in a generative setting. We address this gap by introducing an inverse propensity scoring (IPS) based method for training VAEs from implicit feedback data in an unbiased way. Our IPS-based estimator for the VAE training objective, VAE-IPS, is provably unbiased w.r.t. selection bias. Our experimental results show that the proposed VAE-IPS model reaches significantly higher performance than existing baselines. Our contributions enable practitioners to combine state-of-the-art VAE recommendation techniques with the advantages of bias mitigation for implicit feedback.","PeriodicalId":415621,"journal":{"name":"Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3578337.3605114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Variational autoencoders (VAEs) are the state-of-the-art model for recommendation with implicit feedback signals. Unfortunately, implicit feedback suffers from selection bias, e.g., popularity bias, position bias, etc., and as a result, training from such signals produces biased recommendation models. Existing methods for debiasing the learning process have not been applied in a generative setting. We address this gap by introducing an inverse propensity scoring (IPS) based method for training VAEs from implicit feedback data in an unbiased way. Our IPS-based estimator for the VAE training objective, VAE-IPS, is provably unbiased w.r.t. selection bias. Our experimental results show that the proposed VAE-IPS model reaches significantly higher performance than existing baselines. Our contributions enable practitioners to combine state-of-the-art VAE recommendation techniques with the advantages of bias mitigation for implicit feedback.
基于隐式反馈的无偏学习深度生成推荐方法
变分自编码器(VAEs)是最先进的隐式反馈信号推荐模型。不幸的是,内隐反馈存在选择偏差,例如人气偏差、位置偏差等,因此,从这些信号进行训练会产生有偏差的推荐模型。现有的消除学习过程偏差的方法尚未应用于生成设置。我们通过引入一种基于逆倾向评分(IPS)的方法来解决这一差距,该方法以无偏的方式从隐式反馈数据中训练VAEs。我们的基于ips的VAE训练目标估计器,VAE- ips,是无偏的w.r.t.选择偏差。我们的实验结果表明,所提出的VAE-IPS模型的性能明显高于现有的基线。我们的贡献使从业者能够将最先进的VAE推荐技术与隐式反馈的偏见缓解优势结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信