Context incorporation using context — aware language features

Aggeliki Vlachostergiou, George Marandianos, S. Kollias
{"title":"Context incorporation using context — aware language features","authors":"Aggeliki Vlachostergiou, George Marandianos, S. Kollias","doi":"10.23919/EUSIPCO.2017.8081271","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of context incorporation into human language systems and particular in Sentiment Analysis (SA) systems. So far, the analysis of how different features, when incorporated into such systems, improve their performance, has been discussed in a number of studies. However, a complete picture of their effectiveness remains unexplored. With this work, we attempt to extend the pool of the context — aware language features at the sentence level and to provide the foundations for a concise analysis of the importance of the various types of contextual features, using data from two different in type and size datasets: the Movie Review Dataset (MR) and the Finegrained Sentiment Dataset (FSD).","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the problem of context incorporation into human language systems and particular in Sentiment Analysis (SA) systems. So far, the analysis of how different features, when incorporated into such systems, improve their performance, has been discussed in a number of studies. However, a complete picture of their effectiveness remains unexplored. With this work, we attempt to extend the pool of the context — aware language features at the sentence level and to provide the foundations for a concise analysis of the importance of the various types of contextual features, using data from two different in type and size datasets: the Movie Review Dataset (MR) and the Finegrained Sentiment Dataset (FSD).
使用上下文感知语言特性的上下文整合
本文研究了人类语言系统,特别是情感分析系统中的语境整合问题。到目前为止,已经有许多研究讨论了如何将不同的特征整合到这样的系统中,从而提高它们的性能。然而,其有效性的完整图景仍未被探索。通过这项工作,我们试图在句子级别扩展上下文感知语言特征池,并使用来自两个不同类型和大小的数据集:电影评论数据集(MR)和细粒度情感数据集(FSD)的数据,为简明分析各种类型上下文特征的重要性提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信