A scheduling minmax predictive control algorithm for LPV systems subject to bounded rate parameters

A. Casavola, D. Famularo, G. Franzé
{"title":"A scheduling minmax predictive control algorithm for LPV systems subject to bounded rate parameters","authors":"A. Casavola, D. Famularo, G. Franzé","doi":"10.1109/CDC.2001.980615","DOIUrl":null,"url":null,"abstract":"A novel optimal receding horizon control strategy for input saturated linear time-varying (LTV) discrete-time systems with polytopic model uncertainties when the actual realization of the uncertain parameter is known and when bounded rate uncertain parameter variations are present, is proposed. The approach is based, on the updating at each step, in a binary tree fashion, of the closed convex hulls of all k-steps state trajectories originating from x at time 0 under a quadratically scheduling stabilizing state feedback. The solution is computed by solving an upper-bound on the \"worst-case\" infinite horizon quadratic cost under the constraint of steering the future state evolutions emanating from the current state into a feasible and positive invariant set. whose \"size\" depends on the rate variation of the uncertain parameter. Feasibility and closed loop stability of this strategy are here proved.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A novel optimal receding horizon control strategy for input saturated linear time-varying (LTV) discrete-time systems with polytopic model uncertainties when the actual realization of the uncertain parameter is known and when bounded rate uncertain parameter variations are present, is proposed. The approach is based, on the updating at each step, in a binary tree fashion, of the closed convex hulls of all k-steps state trajectories originating from x at time 0 under a quadratically scheduling stabilizing state feedback. The solution is computed by solving an upper-bound on the "worst-case" infinite horizon quadratic cost under the constraint of steering the future state evolutions emanating from the current state into a feasible and positive invariant set. whose "size" depends on the rate variation of the uncertain parameter. Feasibility and closed loop stability of this strategy are here proved.
具有有界速率参数的LPV系统的调度极小预测控制算法
针对具有多面体模型不确定性的输入饱和线性时变(LTV)离散系统,在不确定参数的实际实现已知和存在有界速率不确定参数变化的情况下,提出了一种新的最优后退水平控制策略。该方法基于在二次调度稳定状态反馈下,以二叉树的方式在每一步更新源自x时刻0的所有k步状态轨迹的封闭凸包。在将未来状态演化从当前状态引导为可行的正不变集的约束下,通过求解“最坏情况”无限视界二次代价的上界来计算解。其“大小”取决于不确定参数的变化率。证明了该策略的可行性和闭环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信