Multi-scale Local Region Relation Attention in Convolutional Neural Networks for Facial Action Unit Intensity Prediction

Anrui Wang, Weiyang Chen
{"title":"Multi-scale Local Region Relation Attention in Convolutional Neural Networks for Facial Action Unit Intensity Prediction","authors":"Anrui Wang, Weiyang Chen","doi":"10.1109/IJCNN55064.2022.9892729","DOIUrl":null,"url":null,"abstract":"Facial Action Unit (FAU) intensity can describe the degree of change in the appearance of a specific location on the face and can be used for the analysis of human facial behavior. Due to the subtle changes in FAU, FAU intensity prediction still faces great challenges. Previous works using attention mechanisms for FAU intensity prediction either simply crop the FAU regions or directly use attention mechanisms to obtain local representations of FAUs, but these methods do not capture FAU intensity features at different scales and locations well. In addition, the dependencies between FAUs also contain important information. In this paper, we propose a multi-scale local-region relational attention model based on convolutional neural networks (CNN) for FAU intensity prediction. Specifically, we first reflect the relationship between FAUs by adjusting the luminance values of face images to capture local features with pixel-level relationships. Then, we use the introduced multi-scale local area relational attention model to extract the local attention latent relational features of FAU. Finally, we combine local attention potential relationship features, facial geometry information, and deep global features captured using an autoencoder to achieve robust FAU intensity prediction. The method is evaluated on the public benchmark dataset DISFA, and experimental results show that our method achieves comparable performance to state-of-the-art methods and validates the effectiveness of a multi-scale local-region relational attention model for FAU intensity prediction.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Facial Action Unit (FAU) intensity can describe the degree of change in the appearance of a specific location on the face and can be used for the analysis of human facial behavior. Due to the subtle changes in FAU, FAU intensity prediction still faces great challenges. Previous works using attention mechanisms for FAU intensity prediction either simply crop the FAU regions or directly use attention mechanisms to obtain local representations of FAUs, but these methods do not capture FAU intensity features at different scales and locations well. In addition, the dependencies between FAUs also contain important information. In this paper, we propose a multi-scale local-region relational attention model based on convolutional neural networks (CNN) for FAU intensity prediction. Specifically, we first reflect the relationship between FAUs by adjusting the luminance values of face images to capture local features with pixel-level relationships. Then, we use the introduced multi-scale local area relational attention model to extract the local attention latent relational features of FAU. Finally, we combine local attention potential relationship features, facial geometry information, and deep global features captured using an autoencoder to achieve robust FAU intensity prediction. The method is evaluated on the public benchmark dataset DISFA, and experimental results show that our method achieves comparable performance to state-of-the-art methods and validates the effectiveness of a multi-scale local-region relational attention model for FAU intensity prediction.
基于卷积神经网络的多尺度局部关系关注面部动作单元强度预测
面部动作单元(FAU)强度可以描述面部特定位置的外观变化程度,可用于分析人类面部行为。由于FAU的微妙变化,FAU强度预测仍面临很大挑战。以往使用注意机制进行FAU强度预测的工作要么简单地剪裁FAU区域,要么直接使用注意机制获得FAU的局部表征,但这些方法都不能很好地捕捉不同尺度和位置的FAU强度特征。此外,fau之间的依赖关系也包含重要的信息。本文提出了一种基于卷积神经网络(CNN)的多尺度局部区域关系注意模型,用于FAU强度预测。具体来说,我们首先通过调整人脸图像的亮度值来反映fau之间的关系,以捕获具有像素级关系的局部特征。然后,利用引入的多尺度局部关系注意模型提取FAU的局部注意潜在关系特征。最后,我们结合局部注意潜在关系特征、面部几何信息和使用自编码器捕获的深度全局特征,实现鲁棒FAU强度预测。在公共基准数据集DISFA上对该方法进行了评估,实验结果表明,该方法达到了与现有方法相当的性能,验证了多尺度局部区域关系关注模型用于FAU强度预测的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信