Embedding Hamiltonian Cycles, Linear Arrays and Rings in a Faulty Supercube

Jen-Chih Lin
{"title":"Embedding Hamiltonian Cycles, Linear Arrays and Rings in a Faulty Supercube","authors":"Jen-Chih Lin","doi":"10.1142/S0129053300000151","DOIUrl":null,"url":null,"abstract":"We consider the problem of finding Hamiltonian cycles, linear arrays and rings of a faulty supercube, if any. The proof of the existence of Hamiltonian cycles in hypercubes is easy due to the fact they are symmetric graphs. Since the supercube is asymmetric, the proof of the existence of Hamiltonian cycles is not trivial. We show that for any supercube SN, where N is the number of nodes in the supercube, there exists a Hamiltonian cycle. This implies that for any r such that 3≤r≤N, there exists a cycle of r nodes in a supercube. There are embedding algorithms proposed in this paper. The embedding algorithms show a ring with any number of nodes which can be embedded in a faulty supercube with load 1, congestion 1 and dilation 4 such that O(n2-(⌊log2 m⌋)2) faults can be tolerated, where n is the dimension of the supercube and m is the number of nodes of the ring.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129053300000151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider the problem of finding Hamiltonian cycles, linear arrays and rings of a faulty supercube, if any. The proof of the existence of Hamiltonian cycles in hypercubes is easy due to the fact they are symmetric graphs. Since the supercube is asymmetric, the proof of the existence of Hamiltonian cycles is not trivial. We show that for any supercube SN, where N is the number of nodes in the supercube, there exists a Hamiltonian cycle. This implies that for any r such that 3≤r≤N, there exists a cycle of r nodes in a supercube. There are embedding algorithms proposed in this paper. The embedding algorithms show a ring with any number of nodes which can be embedded in a faulty supercube with load 1, congestion 1 and dilation 4 such that O(n2-(⌊log2 m⌋)2) faults can be tolerated, where n is the dimension of the supercube and m is the number of nodes of the ring.
在故障超立方体中嵌入哈密顿环、线性阵列和环
我们考虑了一个有缺陷的超立方体的哈密顿环、线性阵列和环的求出问题。由于超立方体是对称图,证明超立方体中哈密顿环的存在性是很容易的。由于超立方体是不对称的,证明哈密顿环的存在是很重要的。我们证明了对于任意超立方体SN,其中N是超立方体的节点数,存在一个哈密顿循环。这意味着对于任何r使得3≤r≤N,在一个超立方体中存在一个由r个节点组成的循环。本文提出了一些嵌入算法。嵌入算法给出了一个具有任意数目节点的环,这些节点可以嵌入到一个负载为1、拥塞为1、膨胀为4的故障超立方体中,使其可以容忍O(n2-(⌊log2 m⌋)2)个故障,其中n为超立方体的维数,m为环的节点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信