H. Notani, M. Fujii, H. Suzuki, H. Makino, H. Shinohara
{"title":"On-chip digital Idn and Idp measurement by 65 nm CMOS speed monitor circuit","authors":"H. Notani, M. Fujii, H. Suzuki, H. Makino, H. Shinohara","doi":"10.1109/ASSCC.2008.4708813","DOIUrl":null,"url":null,"abstract":"An on-chip digital I<sub>ds</sub> measurement method is proposed in this report. In the proposed method, I<sub>ds</sub> is digitally derived from the two values measured by three ring oscillators with PN balanced, N-rich, and P-rich inverters. The first value is the frequency of the PN balanced inverter ring. The second value is the frequency difference between the N-rich and the P-rich inverter rings. The post-digital processing derives NMOS I<sub>ds</sub> (I<sub>dn</sub>) and PMOS I<sub>ds</sub> (I<sub>dp</sub>) separately. The monitor circuit was implemented by 65 nm CMOS technology. The mismatch error between the first I<sub>ds</sub> calculated from measured frequencies, and the second I<sub>ds</sub> directly measured for reference, was analyzed. The standard deviations of the mismatch error in I<sub>dn</sub> and I<sub>dp</sub> are 1.64% and 1.09%, respectively. The margin of 3sigma is within 5% which is our target tolerance for a practical application.","PeriodicalId":143173,"journal":{"name":"2008 IEEE Asian Solid-State Circuits Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2008.4708813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
An on-chip digital Ids measurement method is proposed in this report. In the proposed method, Ids is digitally derived from the two values measured by three ring oscillators with PN balanced, N-rich, and P-rich inverters. The first value is the frequency of the PN balanced inverter ring. The second value is the frequency difference between the N-rich and the P-rich inverter rings. The post-digital processing derives NMOS Ids (Idn) and PMOS Ids (Idp) separately. The monitor circuit was implemented by 65 nm CMOS technology. The mismatch error between the first Ids calculated from measured frequencies, and the second Ids directly measured for reference, was analyzed. The standard deviations of the mismatch error in Idn and Idp are 1.64% and 1.09%, respectively. The margin of 3sigma is within 5% which is our target tolerance for a practical application.
本文提出了一种片上数字id测量方法。在所提出的方法中,Ids由三个环振荡器的PN平衡、富n和富p逆变器测量的两个值数字导出。第一个值是PN平衡逆变器环的频率。第二个值是富n和富p逆变器环之间的频率差。后数字处理分别导出NMOS id (Idn)和PMOS id (Idp)。监控电路采用65nm CMOS技术实现。分析了由实测频率计算的第一个id与直接测量参考的第二个id之间的不匹配误差。Idn和Idp的错配误差标准差分别为1.64%和1.09%。3西格玛的误差在5%以内,这是我们实际应用的目标公差。