Nan Zhao, G. Dublon, N. Gillian, A. Dementyev, J. Paradiso
{"title":"EMI Spy: Harnessing electromagnetic interference for low-cost, rapid prototyping of proxemic interaction","authors":"Nan Zhao, G. Dublon, N. Gillian, A. Dementyev, J. Paradiso","doi":"10.1109/BSN.2015.7299402","DOIUrl":null,"url":null,"abstract":"We present a wearable system that uses ambient electromagnetic interference (EMI) as a signature to identify electronic devices and support proxemic interaction. We designed a low cost tool, called EMI Spy, and a software environment for rapid deployment and evaluation of ambient EMI-based interactive infrastructure. EMI Spy captures electromagnetic interference and delivers the signal to a user's mobile device or PC through either the device's wired audio input or wirelessly using Bluetooth. The wireless version can be worn on the wrist, communicating with the user;s mobile device in their pocket. Users are able to train the system in less than 1 second to uniquely identify displays in a 2-m radius around them, as well as to detect pointing at a distance and touching gestures on the displays in real-time. The combination of a low cost EMI logger and an open source machine learning tool kit allows developers to quickly prototype proxemic, touch-to-connect, and gestural interaction. We demonstrate the feasibility of mobile, EMI-based device and gesture recognition with preliminary user studies in 3 scenarios, achieving 96% classification accuracy at close range for 6 digital signage displays distributed throughout a building, and 90% accuracy in classifying pointing gestures at neighboring desktop LCD displays. We were able to distinguish 1- and 2-finger touching with perfect accuracy and show indications of a way to determine power consumption of a device via touch. Our system is particularly well-suited to temporary use in a public space, where the sensors could be distributed to support a popup interactive environment anywhere with electronic devices. By designing for low cost, mobile, flexible, and infrastructure-free deployment, we aim to enable a host of new proxemic interfaces to existing appliances and displays","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We present a wearable system that uses ambient electromagnetic interference (EMI) as a signature to identify electronic devices and support proxemic interaction. We designed a low cost tool, called EMI Spy, and a software environment for rapid deployment and evaluation of ambient EMI-based interactive infrastructure. EMI Spy captures electromagnetic interference and delivers the signal to a user's mobile device or PC through either the device's wired audio input or wirelessly using Bluetooth. The wireless version can be worn on the wrist, communicating with the user;s mobile device in their pocket. Users are able to train the system in less than 1 second to uniquely identify displays in a 2-m radius around them, as well as to detect pointing at a distance and touching gestures on the displays in real-time. The combination of a low cost EMI logger and an open source machine learning tool kit allows developers to quickly prototype proxemic, touch-to-connect, and gestural interaction. We demonstrate the feasibility of mobile, EMI-based device and gesture recognition with preliminary user studies in 3 scenarios, achieving 96% classification accuracy at close range for 6 digital signage displays distributed throughout a building, and 90% accuracy in classifying pointing gestures at neighboring desktop LCD displays. We were able to distinguish 1- and 2-finger touching with perfect accuracy and show indications of a way to determine power consumption of a device via touch. Our system is particularly well-suited to temporary use in a public space, where the sensors could be distributed to support a popup interactive environment anywhere with electronic devices. By designing for low cost, mobile, flexible, and infrastructure-free deployment, we aim to enable a host of new proxemic interfaces to existing appliances and displays