{"title":"A Fast Reference-Free Genome Compression Using Deep Neural Networks","authors":"Zeinab Nazemi Absardi, R. Javidan","doi":"10.1109/BdKCSE48644.2019.9010661","DOIUrl":null,"url":null,"abstract":"Recent development of DNA sequencing technologies has led to a significant increase in genomic data volume. Such a big amount of genome data needs appropriate data storage, data management, and data transfer policies. Compressing genomes can be used for efficient data management. Auto-encoder is a kind of deep neural networks, due to its ability to reduce the dimension of data is suitable for this purpose. In this paper, a new method for genome compression with auto-encoders based on deep neural networks is proposed. It is the first time that an auto-encoder is used to compress the genomes. Experimental results showed that the proposed method can achieve a compression ratio of up to 5 and 92 percent compression accuracy in case of reference-free genome compression. Moreover, after the auto-encoder training stage, the trained network will have a very short compression time which makes it suitable for real-time applications.","PeriodicalId":206080,"journal":{"name":"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)","volume":"109 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BdKCSE48644.2019.9010661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Recent development of DNA sequencing technologies has led to a significant increase in genomic data volume. Such a big amount of genome data needs appropriate data storage, data management, and data transfer policies. Compressing genomes can be used for efficient data management. Auto-encoder is a kind of deep neural networks, due to its ability to reduce the dimension of data is suitable for this purpose. In this paper, a new method for genome compression with auto-encoders based on deep neural networks is proposed. It is the first time that an auto-encoder is used to compress the genomes. Experimental results showed that the proposed method can achieve a compression ratio of up to 5 and 92 percent compression accuracy in case of reference-free genome compression. Moreover, after the auto-encoder training stage, the trained network will have a very short compression time which makes it suitable for real-time applications.