Dense Optical Flow using RAFT

M. K. Khaishagi, Praful Kumar, D. Naik
{"title":"Dense Optical Flow using RAFT","authors":"M. K. Khaishagi, Praful Kumar, D. Naik","doi":"10.1109/ICAECC54045.2022.9716703","DOIUrl":null,"url":null,"abstract":"RAFT is a deep network architecture for the detection of optical flow in the images. The RAFT model relates the per pixel motion between images even for minor changes in the position of the objects. It also updates the flow of field through recurrent units that perform lookups on the performance of the model. RAFT also works well with different datatypes and also it has better efficiency, training speed and count of parameters. Experiments were performed by using different parameters and also by changing certain values in the model itself. One cycle learning was also used to find the best parameters for the model. We also found that the RAFT model performs better than most of the other existing models for optical flow calculation in to images.","PeriodicalId":199351,"journal":{"name":"2022 IEEE Fourth International Conference on Advances in Electronics, Computers and Communications (ICAECC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Fourth International Conference on Advances in Electronics, Computers and Communications (ICAECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECC54045.2022.9716703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

RAFT is a deep network architecture for the detection of optical flow in the images. The RAFT model relates the per pixel motion between images even for minor changes in the position of the objects. It also updates the flow of field through recurrent units that perform lookups on the performance of the model. RAFT also works well with different datatypes and also it has better efficiency, training speed and count of parameters. Experiments were performed by using different parameters and also by changing certain values in the model itself. One cycle learning was also used to find the best parameters for the model. We also found that the RAFT model performs better than most of the other existing models for optical flow calculation in to images.
利用RAFT实现密集光流
RAFT是一种用于检测图像中光流的深度网络结构。RAFT模型将图像之间的每像素运动联系起来,即使是物体位置的微小变化。它还通过执行查找模型性能的循环单元更新字段流。RAFT也可以很好地处理不同的数据类型,并且具有更好的效率、训练速度和参数计数。通过使用不同的参数和改变模型本身的某些值来进行实验。一个周期学习也被用来寻找模型的最佳参数。我们还发现RAFT模型比大多数现有的模型在图像光流计算中表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信