Forecasting Mortality with International Linkages: A Global Vector-Autoregression Approach

Hong Li, Yanlin Shi
{"title":"Forecasting Mortality with International Linkages: A Global Vector-Autoregression Approach","authors":"Hong Li, Yanlin Shi","doi":"10.2139/ssrn.3700586","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a Global Vector Autoregression (GVAR) mortality model to simultaneously model and forecast multi-population mortality dynamics. The proposed GVAR model decomposes the global regression model into population-wise local systems. Each local system consists of an intra-population autoregressive component and a small set of global factors, which contain systematic mortality information of all populations. Such a decomposition substantially reduces the extra estimation cost of including new populations compared to unconstrained VAR models, and makes the GVAR model an efficient tool for analyzing the joint mortality dynamics of a large group of populations. Further, under fairly general assumptions, the proposed GVAR model could generate coherent mortality projections between any two ages in any two populations. Using single-age mortality data of 15 low-mortality countries, we find that the global factors have substantial explanatory and forecasting power of mortality changes of individual populations, and the proposed GVAR model could produce satisfying mortality forecasts under various settings.","PeriodicalId":439996,"journal":{"name":"Health & the Economy eJournal","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health & the Economy eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3700586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract This paper proposes a Global Vector Autoregression (GVAR) mortality model to simultaneously model and forecast multi-population mortality dynamics. The proposed GVAR model decomposes the global regression model into population-wise local systems. Each local system consists of an intra-population autoregressive component and a small set of global factors, which contain systematic mortality information of all populations. Such a decomposition substantially reduces the extra estimation cost of including new populations compared to unconstrained VAR models, and makes the GVAR model an efficient tool for analyzing the joint mortality dynamics of a large group of populations. Further, under fairly general assumptions, the proposed GVAR model could generate coherent mortality projections between any two ages in any two populations. Using single-age mortality data of 15 low-mortality countries, we find that the global factors have substantial explanatory and forecasting power of mortality changes of individual populations, and the proposed GVAR model could produce satisfying mortality forecasts under various settings.
预测死亡率与国际联系:一个全球向量自回归方法
摘要本文提出了一种全局向量自回归(GVAR)死亡率模型,用于同时建模和预测多种群的死亡率动态。本文提出的GVAR模型将全局回归模型分解为基于人口的局部系统。每个局部系统由种群内自回归成分和一小组全局因素组成,其中包含所有种群的系统死亡率信息。与无约束VAR模型相比,这种分解大大降低了包含新种群的额外估计成本,使GVAR模型成为分析大种群联合死亡率动态的有效工具。此外,在相当一般的假设下,拟议的GVAR模型可以在任何两个人口的任何两个年龄之间产生连贯的死亡率预测。利用15个低死亡率国家的单年龄死亡率数据,我们发现全球因素对个体人口死亡率变化具有较强的解释和预测能力,并且所提出的GVAR模型在各种设定下都能产生令人满意的死亡率预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信