{"title":"Investigating TI KeyStone II and quad-core ARM Cortex-A53 architectures for on-board space processing","authors":"B. Schwaller, B. Ramesh, A. George","doi":"10.1109/HPEC.2017.8091094","DOIUrl":null,"url":null,"abstract":"Future space missions require reliable architectures with higher performance and lower power consumption. Exploring new architectures worthy of undergoing the expensive and time-consuming process of radiation hardening is critical for this endeavor. Two such architectures are the Texas Instruments KeyStone II octal-core processor and the ARM® Cortex®-A53 (ARMv8) quad-core CPU. DSPs have been proven in prior space applications, and the KeyStone II has eight high-performance DSP cores and is under consideration for potential hardening for space. Meanwhile, a radiation-hardened quad-core ARM Cortex-A53 CPU is under development at Boeing under the NASA/AFRL High-Performance Spaceflight Computing initiative. In this paper, we optimize and evaluate the performance of batched 1D-FFTs, 2D-FFTs, and the Complex Ambiguity Function (CAF). We developed a direct memory-access scheme to take advantage of the complex KeyStone architecture for FFTs. Our results for batched 1D-FFTs show that the performance per Watt of KeyStone II is 4.5 times better than the ARM Cortex-A53. For CAF, our results show that the KeyStone II is 1.7 times better.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"137 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Future space missions require reliable architectures with higher performance and lower power consumption. Exploring new architectures worthy of undergoing the expensive and time-consuming process of radiation hardening is critical for this endeavor. Two such architectures are the Texas Instruments KeyStone II octal-core processor and the ARM® Cortex®-A53 (ARMv8) quad-core CPU. DSPs have been proven in prior space applications, and the KeyStone II has eight high-performance DSP cores and is under consideration for potential hardening for space. Meanwhile, a radiation-hardened quad-core ARM Cortex-A53 CPU is under development at Boeing under the NASA/AFRL High-Performance Spaceflight Computing initiative. In this paper, we optimize and evaluate the performance of batched 1D-FFTs, 2D-FFTs, and the Complex Ambiguity Function (CAF). We developed a direct memory-access scheme to take advantage of the complex KeyStone architecture for FFTs. Our results for batched 1D-FFTs show that the performance per Watt of KeyStone II is 4.5 times better than the ARM Cortex-A53. For CAF, our results show that the KeyStone II is 1.7 times better.