Experiments on a time-optimal trajectory planning method based on neural networks

G. Fang, M. Dissanayake
{"title":"Experiments on a time-optimal trajectory planning method based on neural networks","authors":"G. Fang, M. Dissanayake","doi":"10.1109/MMVIP.1997.625322","DOIUrl":null,"url":null,"abstract":"Operating robots along time-optimal trajectories can significantly increase the productivity of robot systems. To plan realistic optimal trajectories, the robot dynamics have to be described precisely. In this paper, a neural network (NN) based algorithm for time-optimal trajectory planning is introduced. This method utilises neural networks for representing the inverse dynamics of the robot. As the proposed neural networks can be trained using data obtained from exciting the robot with given torque inputs, they will capture the complete dynamics of the robot system. Therefore, the optimal trajectories generated by using the neural network model will be more realistic than those obtained using robot dynamic equations with nominal parameters. Time-optimal trajectories are generated for a PUMA robot to demonstrate the proposed method.","PeriodicalId":261635,"journal":{"name":"Proceedings Fourth Annual Conference on Mechatronics and Machine Vision in Practice","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth Annual Conference on Mechatronics and Machine Vision in Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMVIP.1997.625322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Operating robots along time-optimal trajectories can significantly increase the productivity of robot systems. To plan realistic optimal trajectories, the robot dynamics have to be described precisely. In this paper, a neural network (NN) based algorithm for time-optimal trajectory planning is introduced. This method utilises neural networks for representing the inverse dynamics of the robot. As the proposed neural networks can be trained using data obtained from exciting the robot with given torque inputs, they will capture the complete dynamics of the robot system. Therefore, the optimal trajectories generated by using the neural network model will be more realistic than those obtained using robot dynamic equations with nominal parameters. Time-optimal trajectories are generated for a PUMA robot to demonstrate the proposed method.
基于神经网络的时间最优轨迹规划方法实验
沿着时间最优轨迹操作机器人可以显著提高机器人系统的生产率。为了规划现实的最优轨迹,必须精确地描述机器人的动力学。本文介绍了一种基于神经网络的时间最优轨迹规划算法。该方法利用神经网络来表示机器人的逆动力学。由于所提出的神经网络可以使用给定扭矩输入激励机器人获得的数据进行训练,因此它们将捕获机器人系统的完整动态。因此,使用神经网络模型生成的最优轨迹将比使用具有名义参数的机器人动力学方程获得的最优轨迹更真实。以PUMA机器人为例,给出了时间最优轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信