Optimal one-shot quantum algorithm for EQUALITY and AND

A. Ambainis, Janis Iraids
{"title":"Optimal one-shot quantum algorithm for EQUALITY and AND","authors":"A. Ambainis, Janis Iraids","doi":"10.22364/bjmc.2016.4.4.09","DOIUrl":null,"url":null,"abstract":"We study the computation complexity of Boolean functions in the quantum black box model. In this model our task is to compute a function $f:\\{0,1\\}\\to\\{0,1\\}$ on an input $x\\in\\{0,1\\}^n$ that can be accessed by querying the black box. Quantum algorithms are inherently probabilistic; we are interested in the lowest possible probability that the algorithm outputs incorrect answer (the error probability) for a fixed number of queries. We show that the lowest possible error probability for $AND_n$ and $EQUALITY_{n+1}$ is $1/2-n/(n^2+1)$.","PeriodicalId":431209,"journal":{"name":"Balt. J. Mod. Comput.","volume":"62 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Balt. J. Mod. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22364/bjmc.2016.4.4.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the computation complexity of Boolean functions in the quantum black box model. In this model our task is to compute a function $f:\{0,1\}\to\{0,1\}$ on an input $x\in\{0,1\}^n$ that can be accessed by querying the black box. Quantum algorithms are inherently probabilistic; we are interested in the lowest possible probability that the algorithm outputs incorrect answer (the error probability) for a fixed number of queries. We show that the lowest possible error probability for $AND_n$ and $EQUALITY_{n+1}$ is $1/2-n/(n^2+1)$.
等式和与的最优单次量子算法
研究了量子黑箱模型中布尔函数的计算复杂度。在这个模型中,我们的任务是计算一个函数$f:\{0,1\}\到\{0,1\}$对输入$x\在\{0,1\}^n$,可以通过查询黑匣子访问。量子算法本质上是概率性的;我们感兴趣的是,对于固定数量的查询,算法输出错误答案的最低可能概率(错误概率)。我们证明了$AND_n$和$EQUALITY_{n+1}$的最低可能错误概率是$1/2-n/(n^2+1)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信