Klasifikasi rempah rimpang berdasarkan ciri warna rgb dan tekstur glcm menggunakan algoritma naive bayes

Nadya P. Batubara, Didit Widiyanto, Nurul Chamidah
{"title":"Klasifikasi rempah rimpang berdasarkan ciri warna rgb dan tekstur glcm menggunakan algoritma naive bayes","authors":"Nadya P. Batubara, Didit Widiyanto, Nurul Chamidah","doi":"10.52958/IFTK.V16I3.2196","DOIUrl":null,"url":null,"abstract":"Abstrak. Pada penelitian ini akan membahas bagaimana cara mengklasifikasikan beberapa jenis rempah berdasarkan algoritma Naïve Bayes dengan menggunakan ekstraksi ciri warna RGB dan tekstur GLCM. Tahapan dalam proses klasifikasi citra digital pada penelitian ini yaitu praproses citra, segmentasi, ekstraksi ciri, klasifikasi dan uji performa Proses yang dilakukan pada penelitian ini adalah mengubah RGB to Grayscale untuk mendapatkan citra abunya, setelah mengubah citra menjadi Grayscale. Setelah melakukan image enhancement, citra di segmentasi dengan thresholding menggunakan metode Otsu. Setelah mendapatkan hasil dari segmentasi dilakukan RoI (Region of Interest) yang menghasilkan perkalian pixel. Setelah itu dilakukan ekstraksi ciri dengan menggunakan GLCM (Grey Level Co-occurrence Matrix) dan ekstraksi fitur RGB (Red, green, blue) yang di ekstrak ke dalam GLCM. Setelah mendapatkan hasil dari ekstraksi ciri maka dilakukan klasifikasi menggunakan algoritma Naïve Bayes. Tahapan terakhir pada penelitian ini adalah uji performa menggunakan K-fold cross validation dengan K=10 dan mendapatkan hasil akurasi sebesar 52%. Kata Kunci: Rempah-rempah, Naïve Bsayes, RGB, GLCM.","PeriodicalId":157748,"journal":{"name":"Informatik : Jurnal Ilmu Komputer","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatik : Jurnal Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52958/IFTK.V16I3.2196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstrak. Pada penelitian ini akan membahas bagaimana cara mengklasifikasikan beberapa jenis rempah berdasarkan algoritma Naïve Bayes dengan menggunakan ekstraksi ciri warna RGB dan tekstur GLCM. Tahapan dalam proses klasifikasi citra digital pada penelitian ini yaitu praproses citra, segmentasi, ekstraksi ciri, klasifikasi dan uji performa Proses yang dilakukan pada penelitian ini adalah mengubah RGB to Grayscale untuk mendapatkan citra abunya, setelah mengubah citra menjadi Grayscale. Setelah melakukan image enhancement, citra di segmentasi dengan thresholding menggunakan metode Otsu. Setelah mendapatkan hasil dari segmentasi dilakukan RoI (Region of Interest) yang menghasilkan perkalian pixel. Setelah itu dilakukan ekstraksi ciri dengan menggunakan GLCM (Grey Level Co-occurrence Matrix) dan ekstraksi fitur RGB (Red, green, blue) yang di ekstrak ke dalam GLCM. Setelah mendapatkan hasil dari ekstraksi ciri maka dilakukan klasifikasi menggunakan algoritma Naïve Bayes. Tahapan terakhir pada penelitian ini adalah uji performa menggunakan K-fold cross validation dengan K=10 dan mendapatkan hasil akurasi sebesar 52%. Kata Kunci: Rempah-rempah, Naïve Bsayes, RGB, GLCM.
抽象。本研究将讨论如何使用提取RGB颜色和GLCM纹理纹理的Naive Bayes算法对几种香料进行分类。该研究对数字图像进行分类的阶段包括对图像进行分割、提取、提取、描述、分类和测试该研究的过程的各个阶段,即将RGB转化为灰度,以获得其骨灰的图像。形象形象完成后,图像通过大津方法与thresholding进行分割。在得到分割的结果后,感兴趣的区域产生像素乘法。通过使用GLCM(灰色水平的联合occurrence Matrix)和提取提取到GLCM中的RGB特征(红色、绿色、蓝色)进行特征提取。在从提取特征中提取结果后,使用天真贝斯算法进行分类。本研究的最后一个阶段是在K=10的基础上测试K-折叠交叉的性能,并获得52%的准确率。关键词:香料、天真的Bsayes、RGB、GLCM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信