Repairing Reed–Solomon Codes Evaluated on Subspaces

Amit Berman, S. Buzaglo, Avner Dor, Yaron Shany, Itzhak Tamo
{"title":"Repairing Reed–Solomon Codes Evaluated on Subspaces","authors":"Amit Berman, S. Buzaglo, Avner Dor, Yaron Shany, Itzhak Tamo","doi":"10.1109/ISIT45174.2021.9517961","DOIUrl":null,"url":null,"abstract":"We consider the repair problem for Reed-Solomon (RS) codes, evaluated on an <tex>$\\mathbb{F}_{q}$</tex>-linear subspace <tex>$U \\subseteq \\mathbb{F}_{q^{m}}$</tex> of dimension <tex>$d$</tex>, where <tex>$q$</tex> is a prime power, <tex>$m$</tex> is a positive integer, and <tex>$\\mathbb{F}_{q}$</tex> is the Galois field of size <tex>$q$</tex>. For <tex>$q > 2$</tex>, we show the existence of a linear repair scheme for the RS code of length <tex>$n=q^{d}$</tex> and codimension <tex>$q^{s}, s < d$</tex>, evaluated on <tex>$U$</tex>, in which each of the <tex>$n-1$</tex> surviving nodes transmits only <tex>$r$</tex> symbols of <tex>$\\mathbb{F}_{q}$</tex>, provided that <tex>$ms\\geq d(m-r)$</tex>. For the case <tex>$q=2$</tex>, we prove a similar result, with some restrictions on the evaluation linear subspace <tex>$U$</tex>. Our proof is based on a probabilistic argument, however the result is not merely an existence result; the success probability is fairly large (at least 1/3) and there is a simple criterion for checking the validity of the randomly chosen linear repair scheme.","PeriodicalId":299118,"journal":{"name":"2021 IEEE International Symposium on Information Theory (ISIT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT45174.2021.9517961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the repair problem for Reed-Solomon (RS) codes, evaluated on an $\mathbb{F}_{q}$-linear subspace $U \subseteq \mathbb{F}_{q^{m}}$ of dimension $d$, where $q$ is a prime power, $m$ is a positive integer, and $\mathbb{F}_{q}$ is the Galois field of size $q$. For $q > 2$, we show the existence of a linear repair scheme for the RS code of length $n=q^{d}$ and codimension $q^{s}, s < d$, evaluated on $U$, in which each of the $n-1$ surviving nodes transmits only $r$ symbols of $\mathbb{F}_{q}$, provided that $ms\geq d(m-r)$. For the case $q=2$, we prove a similar result, with some restrictions on the evaluation linear subspace $U$. Our proof is based on a probabilistic argument, however the result is not merely an existence result; the success probability is fairly large (at least 1/3) and there is a simple criterion for checking the validity of the randomly chosen linear repair scheme.
子空间上求值的Reed-Solomon码的修复
我们考虑Reed-Solomon (RS)码的修复问题,在维数为$d$的$\mathbb{F}_{q}$ -线性子空间$U \subseteq \mathbb{F}_{q^{m}}$上求值,其中$q$是素数幂,$m$是正整数,$\mathbb{F}_{q}$是大小为$q$的伽罗瓦域。对于$q > 2$,我们展示了长度为$n=q^{d}$,协维为$q^{s}, s < d$的RS码的线性修复方案的存在性,在$U$上进行评估,其中每个$n-1$幸存节点仅传输$\mathbb{F}_{q}$的$r$符号,前提是$ms\geq d(m-r)$。对于情况$q=2$,我们证明了一个类似的结果,但对评估线性子空间$U$有一些限制。我们的证明是基于一个概率的论证,然而结果并不仅仅是一个存在性的结果;成功概率相当大(至少1/3),对于随机选择的线性修复方案的有效性,有一个简单的检验标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信