{"title":"Electro-Physical Properties of Niobia Columnlike Nanostructures via the Anodizing of Al/Nb Layers","authors":"A. Pligovka, A. Lazavenka, A. Zakhlebayeva","doi":"10.1109/NANO.2018.8626387","DOIUrl":null,"url":null,"abstract":"Two types of niobia columnlike nanostructures were synthesized by anodization, reanodization, and chemical etching of sputter-deposited Al/Nb metal layers. The morphological properties of synthesized niobia columnlike nanostructures were determined by means of scanning electron microscopy. The electro-physical characteristics of niobia columnlike nanostructures were investigated in two measurement schemes. Aluminum layers of thickness 500 nm were used as contact pads. The current-voltage I-U characteristic has a nonlinear and nonsymmetrical character. The rising of temperature leads to an increase of the current. This behavior may indicate a p-n or metal-semiconductor junction. The initial resistance at 23 °C was 60 and 120 kOhms, the specific resistance to the height of the columns was 87 and 116 kOhms·nm−1, the calculated temperature coefficient of resistance appeared to be negative and rather low: $-1.39\\times 10^{-2}$ and $-1.28\\times 10^{-2}\\mathrm{K}^{-1}$ for the niobia columnlike nanostructures reanodized at 300 and 450 V, respectively.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Two types of niobia columnlike nanostructures were synthesized by anodization, reanodization, and chemical etching of sputter-deposited Al/Nb metal layers. The morphological properties of synthesized niobia columnlike nanostructures were determined by means of scanning electron microscopy. The electro-physical characteristics of niobia columnlike nanostructures were investigated in two measurement schemes. Aluminum layers of thickness 500 nm were used as contact pads. The current-voltage I-U characteristic has a nonlinear and nonsymmetrical character. The rising of temperature leads to an increase of the current. This behavior may indicate a p-n or metal-semiconductor junction. The initial resistance at 23 °C was 60 and 120 kOhms, the specific resistance to the height of the columns was 87 and 116 kOhms·nm−1, the calculated temperature coefficient of resistance appeared to be negative and rather low: $-1.39\times 10^{-2}$ and $-1.28\times 10^{-2}\mathrm{K}^{-1}$ for the niobia columnlike nanostructures reanodized at 300 and 450 V, respectively.