Optimal Algorithm for Bayesian Incentive-Compatible Exploration

Lee Cohen, Y. Mansour
{"title":"Optimal Algorithm for Bayesian Incentive-Compatible Exploration","authors":"Lee Cohen, Y. Mansour","doi":"10.1145/3328526.3329581","DOIUrl":null,"url":null,"abstract":"We consider a social planner faced with a stream of myopic selfish agents. The goal of the social planner is to maximize the social welfare, however, it is limited to using only information asymmetry (regarding previous outcomes) and cannot use any monetary incentives. The planner recommends actions to agents, but her recommendations need to be Bayesian Incentive Compatible to be followed by the agents. Our main result is an optimal algorithm for the planner, in the case that the actions realizations are deterministic and have limited support, making significant important progress on this open problem. Our optimal protocol has two interesting features. First, it always completes the exploration of a priori more beneficial actions before exploring a priori less beneficial actions. Second, the randomization in the protocol is correlated across agents and actions (and not independent at each decision time).","PeriodicalId":416173,"journal":{"name":"Proceedings of the 2019 ACM Conference on Economics and Computation","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328526.3329581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We consider a social planner faced with a stream of myopic selfish agents. The goal of the social planner is to maximize the social welfare, however, it is limited to using only information asymmetry (regarding previous outcomes) and cannot use any monetary incentives. The planner recommends actions to agents, but her recommendations need to be Bayesian Incentive Compatible to be followed by the agents. Our main result is an optimal algorithm for the planner, in the case that the actions realizations are deterministic and have limited support, making significant important progress on this open problem. Our optimal protocol has two interesting features. First, it always completes the exploration of a priori more beneficial actions before exploring a priori less beneficial actions. Second, the randomization in the protocol is correlated across agents and actions (and not independent at each decision time).
贝叶斯激励相容探索的最优算法
我们假设一个社会规划者面临着一群目光短浅、自私的代理人。社会计划者的目标是最大化社会福利,然而,它仅限于使用信息不对称(关于先前的结果),而不能使用任何货币激励。计划者向代理人推荐行动,但她的建议需要与贝叶斯激励相容,以便代理人遵循。我们的主要结果是在行动实现是确定的并且支持有限的情况下,为计划者提供了一个最优算法,在这个开放问题上取得了重大进展。我们的最佳协议有两个有趣的特征。首先,它总是在探索先验的更有利的行为之前完成对先验的更不利的行为的探索。其次,协议中的随机化在代理和操作之间是相关的(而不是在每个决策时间独立的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信