Pattern Classification Based on Neural Network Ensembles with Regularized Negative Correlation Learning

Xiaoyang Fu, Shuqing Zhang
{"title":"Pattern Classification Based on Neural Network Ensembles with Regularized Negative Correlation Learning","authors":"Xiaoyang Fu, Shuqing Zhang","doi":"10.1109/GCIS.2013.24","DOIUrl":null,"url":null,"abstract":"In this paper, we study neural network ensembles (NNE) classifier with regularized negative correlation learning (RNCL) and its application to pattern classification. In RNCL algorithm, the regularization parameter is used to control the trade off between mean square error and regularization, and to improve the ensemble's generalization ability. We propose an automatic RNCL algorithm based on gradient descent (RNCLgd) to optimize the regularization parameter while evolving the neural network ensemble's weights. The effectiveness of the NNE classifier is demonstrated on a number of benchmark data sets. Compared with back-propagation algorithm multilayer perception (BP-MLP) classifier, it has shown that the NNE classifier with RNCLgd algorithm has better pattern classification performance.","PeriodicalId":366262,"journal":{"name":"2013 Fourth Global Congress on Intelligent Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2013.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we study neural network ensembles (NNE) classifier with regularized negative correlation learning (RNCL) and its application to pattern classification. In RNCL algorithm, the regularization parameter is used to control the trade off between mean square error and regularization, and to improve the ensemble's generalization ability. We propose an automatic RNCL algorithm based on gradient descent (RNCLgd) to optimize the regularization parameter while evolving the neural network ensemble's weights. The effectiveness of the NNE classifier is demonstrated on a number of benchmark data sets. Compared with back-propagation algorithm multilayer perception (BP-MLP) classifier, it has shown that the NNE classifier with RNCLgd algorithm has better pattern classification performance.
基于正则化负相关学习的神经网络集成模式分类
本文研究了正则化负相关学习(RNCL)神经网络集成分类器及其在模式分类中的应用。在RNCL算法中,正则化参数用于控制均方误差与正则化之间的权衡,提高集成的泛化能力。我们提出了一种基于梯度下降的自动RNCL算法(RNCLgd)来优化正则化参数,同时进化神经网络集合的权重。在许多基准数据集上证明了NNE分类器的有效性。与反向传播算法多层感知(BP-MLP)分类器相比,RNCLgd算法的NNE分类器具有更好的模式分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信