Invariant object recognition by shape space analysis

Jun Zhang, X. Zhang, H. Krim
{"title":"Invariant object recognition by shape space analysis","authors":"Jun Zhang, X. Zhang, H. Krim","doi":"10.1109/ICIP.1998.999044","DOIUrl":null,"url":null,"abstract":"This paper describes a new approach to invariant object recognition. In this approach, an object is represented by a set of key points called landmarks. All possible translation, scaling, and rotation of the object are placed into an equivalent class and associated to a single point in a complex projective space called the shape space. Object recognition is then achieved by distance calculations in this shape space. This approach is invariant to object translation, scaling, and rotation, and is computationally simple. Our experimental results also indicate that it is insensitive to noise and moderate occlusions.","PeriodicalId":220168,"journal":{"name":"Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)","volume":"24 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1998.999044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper describes a new approach to invariant object recognition. In this approach, an object is represented by a set of key points called landmarks. All possible translation, scaling, and rotation of the object are placed into an equivalent class and associated to a single point in a complex projective space called the shape space. Object recognition is then achieved by distance calculations in this shape space. This approach is invariant to object translation, scaling, and rotation, and is computationally simple. Our experimental results also indicate that it is insensitive to noise and moderate occlusions.
基于形状空间分析的不变目标识别
本文提出了一种新的不变目标识别方法。在这种方法中,一个对象由一组称为地标的关键点表示。物体的所有可能的平移、缩放和旋转都被放入一个等价的类中,并与称为形状空间的复杂投影空间中的单个点相关联。然后通过该形状空间中的距离计算来实现目标识别。这种方法对对象的平移、缩放和旋转是不变的,并且计算简单。我们的实验结果还表明,它对噪声和中度闭塞不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信