How to quantify the impact of lossy transformations on change detection

Pavel Efros, Erik Buchmann, Adrian Englhardt, Klemens Böhm
{"title":"How to quantify the impact of lossy transformations on change detection","authors":"Pavel Efros, Erik Buchmann, Adrian Englhardt, Klemens Böhm","doi":"10.1145/2791347.2791371","DOIUrl":null,"url":null,"abstract":"To ease the proliferation of big data, it frequently is transformed, be it by compression, be it by anonymization. Such transformations however modify characteristics of the data, such as changes in the case of time series. Changes however are important for subsequent analyses. The impact of those modifications depends on the application scenario, and quantifying it is far from trivial. This is because a transformation can shift or modify existing changes or introduce new ones. In this paper, we propose MILTON, a flexible and robust Measure for quantifying the Impact of Lossy Transformations on subsequent change detectiON. MILTON is applicable to any lossy transformation technique on time-series data and to any general-purpose change-detection approach. We have evaluated it with three real-world use cases. Our evaluation shows that MILTON allows to quantify the impact of lossy transformations and to choose the best one from a class of transformation techniques for a given application scenario.","PeriodicalId":225179,"journal":{"name":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2791347.2791371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To ease the proliferation of big data, it frequently is transformed, be it by compression, be it by anonymization. Such transformations however modify characteristics of the data, such as changes in the case of time series. Changes however are important for subsequent analyses. The impact of those modifications depends on the application scenario, and quantifying it is far from trivial. This is because a transformation can shift or modify existing changes or introduce new ones. In this paper, we propose MILTON, a flexible and robust Measure for quantifying the Impact of Lossy Transformations on subsequent change detectiON. MILTON is applicable to any lossy transformation technique on time-series data and to any general-purpose change-detection approach. We have evaluated it with three real-world use cases. Our evaluation shows that MILTON allows to quantify the impact of lossy transformations and to choose the best one from a class of transformation techniques for a given application scenario.
如何量化有损转换对变更检测的影响
为了缓解大数据的扩散,它经常被转换,或者通过压缩,或者通过匿名。但是,这种转换会修改数据的特征,例如时间序列的变化。然而,更改对于后续分析非常重要。这些修改的影响取决于应用程序场景,对其进行量化绝非微不足道。这是因为转换可以转移或修改现有的更改或引入新的更改。在本文中,我们提出了MILTON,这是一种灵活而稳健的度量,用于量化有损变换对后续变化检测的影响。MILTON适用于任何时间序列数据的有损变换技术和任何通用的变化检测方法。我们已经用三个真实的用例对它进行了评估。我们的评估表明,MILTON允许量化有损转换的影响,并从给定应用场景的一类转换技术中选择最佳的转换技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信