Tuning Multi Object Tracking Systems using Bayesian Optimization

Tobias Fleck, Johann Marius Zöllner
{"title":"Tuning Multi Object Tracking Systems using Bayesian Optimization","authors":"Tobias Fleck, Johann Marius Zöllner","doi":"10.23919/fusion49465.2021.9626895","DOIUrl":null,"url":null,"abstract":"Tracking-by-Detection has become the major paradigm in Multi Object Tracking (MOT) for a large variety of sensors. Regardless of the type of tracking system, hyper parameters are often chosen manually instead of doing a structured search to reveal the full potential of the system.In this work we tackle this problem by utilizing Bayesian Optimization (BO) to tune tracking systems, enabling to find the best combination of hyper parameters for Gaussian Mixture Probability Hypothesis Density Trackers (GM-PHD) in two different tracking applications. We use the Tree-structured Parzen Estimator (TPE) algorithm [1] [2] with an Expected Improvement (EI) acquisition function as a blackbox optimizer. TPE supports to conveniently incorporate domain expert knowledge by modeling prior probability distributions of the search space. In our experiments we use the popular MOTA metric as optimization objective.Evaluation is performed in a simulation scenario with an in depth discussion of the found parameters and a real world example that uses the MOT-20 challenge dataset [3] demonstrates the unconditional applicability of the approach. We finish with a conclusion on Bayesian Optimization for MOT systems and future research.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9626895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tracking-by-Detection has become the major paradigm in Multi Object Tracking (MOT) for a large variety of sensors. Regardless of the type of tracking system, hyper parameters are often chosen manually instead of doing a structured search to reveal the full potential of the system.In this work we tackle this problem by utilizing Bayesian Optimization (BO) to tune tracking systems, enabling to find the best combination of hyper parameters for Gaussian Mixture Probability Hypothesis Density Trackers (GM-PHD) in two different tracking applications. We use the Tree-structured Parzen Estimator (TPE) algorithm [1] [2] with an Expected Improvement (EI) acquisition function as a blackbox optimizer. TPE supports to conveniently incorporate domain expert knowledge by modeling prior probability distributions of the search space. In our experiments we use the popular MOTA metric as optimization objective.Evaluation is performed in a simulation scenario with an in depth discussion of the found parameters and a real world example that uses the MOT-20 challenge dataset [3] demonstrates the unconditional applicability of the approach. We finish with a conclusion on Bayesian Optimization for MOT systems and future research.
基于贝叶斯优化的多目标跟踪系统调优
检测跟踪已成为多目标跟踪(MOT)的主要模式,适用于各种传感器。无论哪种类型的跟踪系统,通常都是手动选择超参数,而不是进行结构化搜索以揭示系统的全部潜力。在这项工作中,我们通过利用贝叶斯优化(BO)来调整跟踪系统来解决这个问题,从而能够在两种不同的跟踪应用中为高斯混合概率假设密度跟踪器(GM-PHD)找到超参数的最佳组合。我们使用树形结构Parzen Estimator (TPE)算法[1][2]和期望改进(EI)获取函数作为黑盒优化器。TPE支持通过对搜索空间的先验概率分布建模,方便地整合领域专家知识。在我们的实验中,我们使用流行的MOTA指标作为优化目标。评估是在模拟场景中进行的,对发现的参数进行了深入的讨论,使用MOT-20挑战数据集的真实世界示例[3]证明了该方法的无条件适用性。最后对交通运输系统的贝叶斯优化进行了总结,并展望了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信