{"title":"Depth from focus for 3D reconstruction by iteratively building uniformly focused image set","authors":"Sherzod Salokhiddinov, Seungkyu Lee","doi":"10.1145/3230744.3230799","DOIUrl":null,"url":null,"abstract":"Depth estimation from differently focused set of images has been a practical approach for 3D reconstruction with existing color cameras. In this paper, we propose a depth from focus (DFF) method for accurate depth estimation using single commodity color camera. We investigate the appearance changes in spatial and frequency domain along the focused image frames in iterative manner. In order to achieve sub-frame level accuracy in depth estimation, optimal location of in-focus frame is estimated by fitting a parameterized polynomial curve on the dissimilarity measurements of each pixel. Quantitative and qualitative evaluations on various test image sets show promising performance of the proposed method in depth estimation.","PeriodicalId":226759,"journal":{"name":"ACM SIGGRAPH 2018 Posters","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2018 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230744.3230799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Depth estimation from differently focused set of images has been a practical approach for 3D reconstruction with existing color cameras. In this paper, we propose a depth from focus (DFF) method for accurate depth estimation using single commodity color camera. We investigate the appearance changes in spatial and frequency domain along the focused image frames in iterative manner. In order to achieve sub-frame level accuracy in depth estimation, optimal location of in-focus frame is estimated by fitting a parameterized polynomial curve on the dissimilarity measurements of each pixel. Quantitative and qualitative evaluations on various test image sets show promising performance of the proposed method in depth estimation.