Continuous ID3 algorithm with fuzzy entropy measures

K. Cios, L. Sztandera
{"title":"Continuous ID3 algorithm with fuzzy entropy measures","authors":"K. Cios, L. Sztandera","doi":"10.1109/FUZZY.1992.258659","DOIUrl":null,"url":null,"abstract":"Fuzzy entropy measures are used to obtain a quick convergence of a continuous ID3 (CID3) algorithm proposed by K.J. Cios and N. Liu (1991), which allows for self-generation of a hierarchical feedforward neural network architecture by converting decision trees into hidden layers of a neural network. To demonstrate the learning capacity of the fuzzy version of the CID3 algorithm, it was tested on difficult spiral data consisting of 192 points, with 96 points for each spiral. One spiral is generated as a reflection of another, making the problem highly not linearly separable. A remarkable decrease in convergence time is achieved by using a fuzzy entropy measure with generalized Dombi operations.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Fuzzy entropy measures are used to obtain a quick convergence of a continuous ID3 (CID3) algorithm proposed by K.J. Cios and N. Liu (1991), which allows for self-generation of a hierarchical feedforward neural network architecture by converting decision trees into hidden layers of a neural network. To demonstrate the learning capacity of the fuzzy version of the CID3 algorithm, it was tested on difficult spiral data consisting of 192 points, with 96 points for each spiral. One spiral is generated as a reflection of another, making the problem highly not linearly separable. A remarkable decrease in convergence time is achieved by using a fuzzy entropy measure with generalized Dombi operations.<>
带有模糊熵测度的连续ID3算法
使用模糊熵测度获得K.J. Cios和N. Liu(1991)提出的连续ID3 (CID3)算法的快速收敛性,该算法通过将决策树转换为神经网络的隐藏层,允许自生成分层前馈神经网络架构。为了验证模糊版CID3算法的学习能力,在192个点的难螺旋数据上进行了测试,每个螺旋96个点。一个螺旋是另一个螺旋的反射,使得问题高度不可线性分离。采用模糊熵测度和广义Dombi操作,显著降低了算法的收敛时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信