Cycle Analysis and Construction of Protographs for QC LDPC Codes With Girth Larger Than 12

Sunghwan Kim, Jong-Seon No, Habong Chung, Dong-joon Shin
{"title":"Cycle Analysis and Construction of Protographs for QC LDPC Codes With Girth Larger Than 12","authors":"Sunghwan Kim, Jong-Seon No, Habong Chung, Dong-joon Shin","doi":"10.1109/ISIT.2007.4557555","DOIUrl":null,"url":null,"abstract":"A quasi-cyclic (QC) low-density parity-check (LDPC) code can be viewed as the protograph code with circulant permutation matrices. In this paper, we find all the subgraph patterns of protographs of QC LDPC codes having inevitable cycles of length 2i, i = 6,7,8,9,10, i.e., the cycles existing regardless of the shift values of circulants. It is also derived that if the girth of the protograph is 2g, g ges 2, its protograph code cannot have the inevitable cycles of length smaller than 6g. Based on these subgraph patterns, we propose new combinatorial construction methods of the protographs, whose protograph codes can have girth larger than or equal to 14.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A quasi-cyclic (QC) low-density parity-check (LDPC) code can be viewed as the protograph code with circulant permutation matrices. In this paper, we find all the subgraph patterns of protographs of QC LDPC codes having inevitable cycles of length 2i, i = 6,7,8,9,10, i.e., the cycles existing regardless of the shift values of circulants. It is also derived that if the girth of the protograph is 2g, g ges 2, its protograph code cannot have the inevitable cycles of length smaller than 6g. Based on these subgraph patterns, we propose new combinatorial construction methods of the protographs, whose protograph codes can have girth larger than or equal to 14.
周长大于12的QC LDPC码的循环分析及原型图的构造
准循环(QC)低密度奇偶校验(LDPC)码可以看作具有循环置换矩阵的原型码。本文找到了QC LDPC码的原型图的所有子图模式都具有长度为2i, i = 6,7,8,9,10的必然循环,即无论循环的移位值如何,循环都存在。还推导出,若原型的周长为2g,则其原型码不可能存在长度小于6g的必然循环。基于这些子图模式,我们提出了新的组合构造原生图的方法,其原生图码的周长可以大于等于14。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信