Unsupervised Dempster-Shafer fusion of dependent sensors

W. Pieczynski
{"title":"Unsupervised Dempster-Shafer fusion of dependent sensors","authors":"W. Pieczynski","doi":"10.1109/IAI.2000.839609","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of statistical unsupervised fusion of dependent sensors with its potential applications to multisensor image segmentation. On the one hand, Bayesian fusions can be of great efficiency, particularly when using hidden Markov models. On the other hand, we give some examples showing that there are situations in which the Dempster-Shafer fusion can be usefully integrated into the classical Bayesian models. The contribution of this paper is then to show how a recent parameter estimation of probabilistic models, valid in the dependent and possible non-Gaussian sensors case, can be extended to situations in which some of the sensors can be evidential. The proposed method allows one to imagine different unsupervised segmentation methods, valid in the Dempster-Shafer framework for dependent and possibly non-Gaussian sensors.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"7 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper deals with the problem of statistical unsupervised fusion of dependent sensors with its potential applications to multisensor image segmentation. On the one hand, Bayesian fusions can be of great efficiency, particularly when using hidden Markov models. On the other hand, we give some examples showing that there are situations in which the Dempster-Shafer fusion can be usefully integrated into the classical Bayesian models. The contribution of this paper is then to show how a recent parameter estimation of probabilistic models, valid in the dependent and possible non-Gaussian sensors case, can be extended to situations in which some of the sensors can be evidential. The proposed method allows one to imagine different unsupervised segmentation methods, valid in the Dempster-Shafer framework for dependent and possibly non-Gaussian sensors.
相关传感器的无监督Dempster-Shafer融合
研究了相关传感器的统计无监督融合问题及其在多传感器图像分割中的潜在应用。一方面,贝叶斯融合具有很高的效率,特别是在使用隐马尔可夫模型时。另一方面,我们给出了一些例子,表明在某些情况下,Dempster-Shafer融合可以有效地集成到经典贝叶斯模型中。本文的贡献是展示了最近的概率模型的参数估计,在相关和可能的非高斯传感器情况下有效,可以扩展到一些传感器可以是证据的情况。提出的方法允许人们想象不同的无监督分割方法,在Dempster-Shafer框架中对依赖的和可能的非高斯传感器有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信