Grapheme and multilingual posterior features for under-resourced speech recognition: A study on Scottish Gaelic

Ramya Rasipuram, P. Bell, M. Magimai.-Doss
{"title":"Grapheme and multilingual posterior features for under-resourced speech recognition: A study on Scottish Gaelic","authors":"Ramya Rasipuram, P. Bell, M. Magimai.-Doss","doi":"10.1109/ICASSP.2013.6639087","DOIUrl":null,"url":null,"abstract":"Standard automatic speech recognition (ASR) systems use phonemes as subword units. Thus, one of the primary resource required to build a good ASR system is a well developed phoneme pronunciation lexicon. However, under-resourced languages typically lack such lexical resources. In this paper, we investigate recently proposed grapheme-based ASR in the framework of Kullback-Leibler divergence based hidden Markov model (KL-HMM) for underresourced languages, particularly Scottish Gaelic which has no lexical resources. More specifically, we study the use of grapheme and multilingual phoneme class conditional probabilities (posterior features) as feature observations in KL-HMM. ASR studies conducted show that the proposed approach yields better system compared to the conventional HMM/GMM approach using cepstral features. Furthermore, grapheme posterior features estimated using both auxiliary data and Gaelic data yield the best system.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6639087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Standard automatic speech recognition (ASR) systems use phonemes as subword units. Thus, one of the primary resource required to build a good ASR system is a well developed phoneme pronunciation lexicon. However, under-resourced languages typically lack such lexical resources. In this paper, we investigate recently proposed grapheme-based ASR in the framework of Kullback-Leibler divergence based hidden Markov model (KL-HMM) for underresourced languages, particularly Scottish Gaelic which has no lexical resources. More specifically, we study the use of grapheme and multilingual phoneme class conditional probabilities (posterior features) as feature observations in KL-HMM. ASR studies conducted show that the proposed approach yields better system compared to the conventional HMM/GMM approach using cepstral features. Furthermore, grapheme posterior features estimated using both auxiliary data and Gaelic data yield the best system.
资源不足语音识别的字素和多语言后验特征:苏格兰盖尔语的研究
标准的自动语音识别(ASR)系统使用音素作为子词单位。因此,建立一个良好的语音识别系统所需要的主要资源之一是一个完善的音素发音词典。然而,资源不足的语言通常缺乏这样的词汇资源。在本文中,我们在基于Kullback-Leibler散度的隐马尔可夫模型(KL-HMM)框架下研究了最近提出的基于字素的ASR,用于资源不足的语言,特别是没有词汇资源的苏格兰盖尔语。更具体地说,我们研究了在KL-HMM中使用字素和多语言音素类条件概率(后验特征)作为特征观察。进行的ASR研究表明,与使用倒谱特征的传统HMM/GMM方法相比,所提出的方法产生了更好的系统。此外,使用辅助数据和盖尔数据估计的字素后验特征产生最佳系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信