How do you correct run-on sentences it’s not as easy as it seems

NUT@EMNLP Pub Date : 2018-09-01 DOI:10.18653/v1/W18-6105
Junchao Zheng, Courtney Napoles, Joel R. Tetreault, Kostiantyn Omelianchuk
{"title":"How do you correct run-on sentences it’s not as easy as it seems","authors":"Junchao Zheng, Courtney Napoles, Joel R. Tetreault, Kostiantyn Omelianchuk","doi":"10.18653/v1/W18-6105","DOIUrl":null,"url":null,"abstract":"Run-on sentences are common grammatical mistakes but little research has tackled this problem to date. This work introduces two machine learning models to correct run-on sentences that outperform leading methods for related tasks, punctuation restoration and whole-sentence grammatical error correction. Due to the limited annotated data for this error, we experiment with artificially generating training data from clean newswire text. Our findings suggest artificial training data is viable for this task. We discuss implications for correcting run-ons and other types of mistakes that have low coverage in error-annotated corpora.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-6105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Run-on sentences are common grammatical mistakes but little research has tackled this problem to date. This work introduces two machine learning models to correct run-on sentences that outperform leading methods for related tasks, punctuation restoration and whole-sentence grammatical error correction. Due to the limited annotated data for this error, we experiment with artificially generating training data from clean newswire text. Our findings suggest artificial training data is viable for this task. We discuss implications for correcting run-ons and other types of mistakes that have low coverage in error-annotated corpora.
你如何纠正连句?这并不像看起来那么容易
连句是常见的语法错误,但迄今为止很少有研究解决这个问题。这项工作介绍了两种机器学习模型来纠正运行的句子,它们在相关任务、标点恢复和整句语法错误纠正方面优于领先的方法。由于此错误的注释数据有限,我们尝试从干净的新闻专线文本中人工生成训练数据。我们的研究结果表明,人工训练数据对于这项任务是可行的。我们讨论了在带错误注释的语料库中纠错和其他类型的低覆盖率错误的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信