S. Karpakam, N. Senthilkumar, R. Kishorekumar, U. Ramani, P. Malini, S. Irfanbasha
{"title":"Investigation of Brain Tumor Recognition and Classification using Deep Learning in Medical Image Processing","authors":"S. Karpakam, N. Senthilkumar, R. Kishorekumar, U. Ramani, P. Malini, S. Irfanbasha","doi":"10.1109/ICAISS55157.2022.10010954","DOIUrl":null,"url":null,"abstract":"A brain tumour is the growth of brain cells that are abnormal, some of which may progress into cancer. Magnetic Resonance Imaging (MRI) scans are the method used most frequently to detect brain tumours. The brain's abnormal tissue growth can be seen on the MRI images, which reveal. Deep learning and machine learning techniques are employed to identify brain tumours in a number of research publications. It only takes a very short amount of time to predict a brain tumour when these algorithms are applied to MRI images, and the increased accuracy makes patient treatment simpler. Thanks to these forecasts, the radiologist can make quick decisions. The suggested approach employs deep learning, a convolution neural network (CNN), an artificial neural network (ANN), a self-defined neural network, andthe existence of brain tumor.","PeriodicalId":243784,"journal":{"name":"2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAISS55157.2022.10010954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A brain tumour is the growth of brain cells that are abnormal, some of which may progress into cancer. Magnetic Resonance Imaging (MRI) scans are the method used most frequently to detect brain tumours. The brain's abnormal tissue growth can be seen on the MRI images, which reveal. Deep learning and machine learning techniques are employed to identify brain tumours in a number of research publications. It only takes a very short amount of time to predict a brain tumour when these algorithms are applied to MRI images, and the increased accuracy makes patient treatment simpler. Thanks to these forecasts, the radiologist can make quick decisions. The suggested approach employs deep learning, a convolution neural network (CNN), an artificial neural network (ANN), a self-defined neural network, andthe existence of brain tumor.