Anagh Benjwal, Prajwal Uday, Aditya Vadduri, Abhishek Pai
{"title":"Safe Landing Zone Detection for UAVs using Image Segmentation and Super Resolution","authors":"Anagh Benjwal, Prajwal Uday, Aditya Vadduri, Abhishek Pai","doi":"10.23919/MVA57639.2023.10215759","DOIUrl":null,"url":null,"abstract":"Increased usage of UAVs in urban environments has led to the necessity of safe and robust emergency landing zone detection techniques. This paper presents a novel approach for detecting safe landing zones for UAVs using deep learning-based image segmentation. Our approach involves using a custom dataset to train a CNN model. To account for low-resolution input images, our approach incorporates a Super-Resolution model to upscale low-resolution images before feeding them into the segmentation model. The proposed approach achieves robust and accurate detection of safe landing zones, even on low-resolution images. Experimental results demonstrate the effectiveness of our method and show a marked improvement of upto 6.3% in accuracy over state-of-the-art safe landing zone detection methods.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Increased usage of UAVs in urban environments has led to the necessity of safe and robust emergency landing zone detection techniques. This paper presents a novel approach for detecting safe landing zones for UAVs using deep learning-based image segmentation. Our approach involves using a custom dataset to train a CNN model. To account for low-resolution input images, our approach incorporates a Super-Resolution model to upscale low-resolution images before feeding them into the segmentation model. The proposed approach achieves robust and accurate detection of safe landing zones, even on low-resolution images. Experimental results demonstrate the effectiveness of our method and show a marked improvement of upto 6.3% in accuracy over state-of-the-art safe landing zone detection methods.