Solid state qubits: how learning from CMOS fabrication can speed-up progress in Quantum Computing

I. Radu, Roy Li, A. Potočnik, T. Ivanov, D. Wan, S. Kubicek, N. D. Stuyck, J. Verjauw, J. Jussot, Y. Canvel, C. Godfrin, M. Mongillo, R. Acharya, A. Elsayed, M. Shehata, X. Piao, A. Pacco, L. Souriau, S. Couet, B. Chan, J. Craninckx, B. Parvais, A. Grill, S. Narasimhamoorthy, S. V. Winckel, S. Brebels, F. Mohiyaddin, G. Simion, B. Govoreanu
{"title":"Solid state qubits: how learning from CMOS fabrication can speed-up progress in Quantum Computing","authors":"I. Radu, Roy Li, A. Potočnik, T. Ivanov, D. Wan, S. Kubicek, N. D. Stuyck, J. Verjauw, J. Jussot, Y. Canvel, C. Godfrin, M. Mongillo, R. Acharya, A. Elsayed, M. Shehata, X. Piao, A. Pacco, L. Souriau, S. Couet, B. Chan, J. Craninckx, B. Parvais, A. Grill, S. Narasimhamoorthy, S. V. Winckel, S. Brebels, F. Mohiyaddin, G. Simion, B. Govoreanu","doi":"10.23919/VLSICircuits52068.2021.9492397","DOIUrl":null,"url":null,"abstract":"Building quantum computers requires not only a large number of qubits with high fidelity and low variability, but also a large amount of analog and digital components to drive the qubits. Larger arrays of solid-state qubits with high fidelity and low variability require improvements in fabrication processes and array layout design co-optimized with the underlying hardware technology. Here we outline progress on 300mm fabrication of qubit devices and on classical CMOS components to enable the quantum system. We describe work on superconducting qubits and spin qubits in Si, both types of devices fabricated on 300mm experimental platforms and discuss challenges related to variability. Massive electrical characterization is key over wide temperature range is key to enabling system upscaling for QC.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Building quantum computers requires not only a large number of qubits with high fidelity and low variability, but also a large amount of analog and digital components to drive the qubits. Larger arrays of solid-state qubits with high fidelity and low variability require improvements in fabrication processes and array layout design co-optimized with the underlying hardware technology. Here we outline progress on 300mm fabrication of qubit devices and on classical CMOS components to enable the quantum system. We describe work on superconducting qubits and spin qubits in Si, both types of devices fabricated on 300mm experimental platforms and discuss challenges related to variability. Massive electrical characterization is key over wide temperature range is key to enabling system upscaling for QC.
固态量子比特:从CMOS制造中学习如何加速量子计算的进展
构建量子计算机不仅需要大量具有高保真度和低可变性的量子比特,还需要大量的模拟和数字元件来驱动量子比特。更大的具有高保真度和低可变性的固态量子比特阵列需要改进制造工艺和阵列布局设计,并与底层硬件技术协同优化。在这里,我们概述了300mm量子比特器件的制造和经典CMOS元件的进展,以实现量子系统。我们描述了在硅中超导量子比特和自旋量子比特的工作,这两种类型的设备都是在300mm实验平台上制造的,并讨论了与可变性相关的挑战。大规模的电气特性是关键,在宽温度范围内是关键,使QC系统升级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信