GoPro: a Low Complexity Task Allocation Algorithm for a Mobile Edge Computing System

Arghyadip Roy, Nilanjan Biswas
{"title":"GoPro: a Low Complexity Task Allocation Algorithm for a Mobile Edge Computing System","authors":"Arghyadip Roy, Nilanjan Biswas","doi":"10.1109/NCC55593.2022.9806731","DOIUrl":null,"url":null,"abstract":"In an Internet of Things (IoT) based network, tasks arriving at individual nodes can be processed in-device or at a local Mobile Edge Computing (MEC) server. In this paper, we focus on the optimal resource allocation problem for tasks arriving in an MEC based IoT network. To address the inherent trade-off between the computation time and the power consumption, we aim to minimize the average power consumption subject to a constraint on the deadline violation probability. The problem is formulated as a Constrained Markov Decision Process (CMDP) problem. To address the high complexities of achieving optimality, we propose a low-complexity heuristic task scheduling scheme. Efficacy of our approach is demonstrated using simulations.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In an Internet of Things (IoT) based network, tasks arriving at individual nodes can be processed in-device or at a local Mobile Edge Computing (MEC) server. In this paper, we focus on the optimal resource allocation problem for tasks arriving in an MEC based IoT network. To address the inherent trade-off between the computation time and the power consumption, we aim to minimize the average power consumption subject to a constraint on the deadline violation probability. The problem is formulated as a Constrained Markov Decision Process (CMDP) problem. To address the high complexities of achieving optimality, we propose a low-complexity heuristic task scheduling scheme. Efficacy of our approach is demonstrated using simulations.
GoPro:一种移动边缘计算系统的低复杂度任务分配算法
在基于物联网(IoT)的网络中,到达单个节点的任务可以在设备内或在本地移动边缘计算(MEC)服务器上处理。在本文中,我们专注于基于MEC的物联网网络中到达任务的最优资源分配问题。为了解决计算时间和功耗之间的内在权衡,我们的目标是在约束截止日期违反概率的情况下最小化平均功耗。将该问题表述为约束马尔可夫决策过程问题。为了解决实现最优性的高复杂性,我们提出了一种低复杂性的启发式任务调度方案。通过仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信