A SCALABLE HYBRID CPU-GPU COMPUTATIONAL FRAMEWORK FOR A FINITE ELEMENT-BASED AIR QUALITY MODEL

A. Samaké, M. Alassane, A. Mahamane, O. Diallo
{"title":"A SCALABLE HYBRID CPU-GPU COMPUTATIONAL FRAMEWORK FOR A FINITE ELEMENT-BASED AIR QUALITY MODEL","authors":"A. Samaké, M. Alassane, A. Mahamane, O. Diallo","doi":"10.37418/amsj.12.1.3","DOIUrl":null,"url":null,"abstract":"We propose a scalable computational framework for the hybrid CPU-GPU implementation ofa traffic-induced and finite element-based air quality model. The hybrid computing paradigm we investigate consists in combining the CPU-based distributed-memory programming approach using Message Passing Interface (MPI) and a GPU programming model for the finite element numerical integration using Compute Unified Device Architecture (CUDA), a general purpose parallel computing platform released by NVIDIA Corporation and featured on its own GPUs. The scalability results obtained from numerical experiments on two major road traffic-induced air pollutants, namely the fine and inhalable particulate matter PM$_{2.5}$ and PM$_{10}$, are illustrated. These achievements, including speedup and efficiency analyses, support that this framework scales well up to 256 CPU cores used concurrently with GPUs from a hybrid computing system.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a scalable computational framework for the hybrid CPU-GPU implementation ofa traffic-induced and finite element-based air quality model. The hybrid computing paradigm we investigate consists in combining the CPU-based distributed-memory programming approach using Message Passing Interface (MPI) and a GPU programming model for the finite element numerical integration using Compute Unified Device Architecture (CUDA), a general purpose parallel computing platform released by NVIDIA Corporation and featured on its own GPUs. The scalability results obtained from numerical experiments on two major road traffic-induced air pollutants, namely the fine and inhalable particulate matter PM$_{2.5}$ and PM$_{10}$, are illustrated. These achievements, including speedup and efficiency analyses, support that this framework scales well up to 256 CPU cores used concurrently with GPUs from a hybrid computing system.
基于有限元的空气质量模型的可扩展混合cpu-gpu计算框架
我们提出了一个可扩展的计算框架,用于混合CPU-GPU实现交通诱导和基于有限元的空气质量模型。我们研究的混合计算范式包括使用消息传递接口(MPI)的基于cpu的分布式内存编程方法和使用计算统一设备架构(CUDA)的有限元数值集成的GPU编程模型,CUDA是NVIDIA公司发布的通用并行计算平台,并在其自己的GPU上具有特色。对道路交通诱导的两种主要空气污染物,即细颗粒物PM${2.5}$和可吸入颗粒物PM${10}$进行了数值实验,得到了可扩展性结果。这些成就,包括加速和效率分析,支持该框架可以扩展到256个CPU内核,并与混合计算系统的gpu同时使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信