{"title":"Hydrodynamic Profiles Of Computed Tomography-Scanned Polydispersed Beds Produced By Sieving","authors":"Stylianos Kyrimis, R. Raja, L. Armstrong","doi":"10.11159/ffhmt23.171","DOIUrl":null,"url":null,"abstract":"Computational Fluid Dynamics (CFD) models are a valuable tool for design, optimization, and scaling-up of fixed bed chemical reactors. However, the realistic representation of the catalytic bed structure and the mesh quality of the 3D geometry is of paramount importance to improve the accuracy of CFD models. For the former, computed tomography (CT) is a non-destructive method to map and generate the internal structure of actual fixed bed reactors, formed by catalytic particles produced by sieving, thus directly coupling experiments with CFD models. Due to the local topological complexity of these beds, however, meshing their entire volume would lead to exhaustive computational demands. To reduce these, a suitable sample section should be selected, which respects the bulk and radial porosity of the full bed as accurately as possible. Three distinct sample sections were quantified here for their accuracy, identifying that, due to the highly heterogeneous nature of the full beds, sample selection is case sensitive. A selected section was then meshed, and its hydrodynamic profile resolved, to evaluate its mesh independency. The results highlight the importance of choosing a suitable bed section and mesh size to reduce the computational demands, minimise the computational errors, and achieve the desired level of solution detail.","PeriodicalId":307960,"journal":{"name":"Proceedings of the 10th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT 2023)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/ffhmt23.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Computational Fluid Dynamics (CFD) models are a valuable tool for design, optimization, and scaling-up of fixed bed chemical reactors. However, the realistic representation of the catalytic bed structure and the mesh quality of the 3D geometry is of paramount importance to improve the accuracy of CFD models. For the former, computed tomography (CT) is a non-destructive method to map and generate the internal structure of actual fixed bed reactors, formed by catalytic particles produced by sieving, thus directly coupling experiments with CFD models. Due to the local topological complexity of these beds, however, meshing their entire volume would lead to exhaustive computational demands. To reduce these, a suitable sample section should be selected, which respects the bulk and radial porosity of the full bed as accurately as possible. Three distinct sample sections were quantified here for their accuracy, identifying that, due to the highly heterogeneous nature of the full beds, sample selection is case sensitive. A selected section was then meshed, and its hydrodynamic profile resolved, to evaluate its mesh independency. The results highlight the importance of choosing a suitable bed section and mesh size to reduce the computational demands, minimise the computational errors, and achieve the desired level of solution detail.