Lateral Aerodynamic Parameters Estimation using Neuro Artificial Bee Colony Fusion Algorithm (NABC)

Prashant Kumar, S. Sonkar, A. K. Ghosh, Deepu Philip
{"title":"Lateral Aerodynamic Parameters Estimation using Neuro Artificial Bee Colony Fusion Algorithm (NABC)","authors":"Prashant Kumar, S. Sonkar, A. K. Ghosh, Deepu Philip","doi":"10.1109/ICAITPR51569.2022.9844223","DOIUrl":null,"url":null,"abstract":"Aerodynamic parameter estimation entails modelling force and moment coefficients as well as computing stability and control derivatives from flight data. This topic has been thoroughly researched utilizing traditional procedures such as output, filter, and equation error methods. Machine learning, such as artificial neural networks, provides an alternate way to these model-based methodologies. This paper proposes a novel estimation technique for aerodynamic parameters of a real aircraft in the presence of system and measurement uncertainty. A fusion between biologically inspired optimization i.e., Artificial Bee Colony (ABC) optimization and widely used Artificial Neural Network (ANN), which mimics the functional unit of the brain, the neuron, has been demonstrated to be novel and a promising method to the challenges of system identification and parameter estimation (sensor noise). The obtained results were compared to Least Square, and Maximum Likelihood Method (MLE), benchmark estimation techniques.","PeriodicalId":262409,"journal":{"name":"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAITPR51569.2022.9844223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aerodynamic parameter estimation entails modelling force and moment coefficients as well as computing stability and control derivatives from flight data. This topic has been thoroughly researched utilizing traditional procedures such as output, filter, and equation error methods. Machine learning, such as artificial neural networks, provides an alternate way to these model-based methodologies. This paper proposes a novel estimation technique for aerodynamic parameters of a real aircraft in the presence of system and measurement uncertainty. A fusion between biologically inspired optimization i.e., Artificial Bee Colony (ABC) optimization and widely used Artificial Neural Network (ANN), which mimics the functional unit of the brain, the neuron, has been demonstrated to be novel and a promising method to the challenges of system identification and parameter estimation (sensor noise). The obtained results were compared to Least Square, and Maximum Likelihood Method (MLE), benchmark estimation techniques.
基于神经人工蜂群融合算法(NABC)的横向气动参数估计
气动参数估计需要对力和力矩系数进行建模,并根据飞行数据计算稳定性和控制导数。利用传统的程序,如输出、滤波和方程误差方法,对这个主题进行了深入的研究。机器学习,如人工神经网络,为这些基于模型的方法提供了另一种方法。本文提出了一种存在系统不确定度和测量不确定度的真实飞机气动参数估计方法。生物启发优化,即人工蜂群(ABC)优化和广泛使用的人工神经网络(ANN)之间的融合,模仿大脑的功能单元,神经元,已被证明是一种新颖的,有前途的方法来解决系统识别和参数估计(传感器噪声)的挑战。所得结果与最小二乘法、最大似然法(MLE)、基准估计技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信