Kuranishi spaces as a 2-category

D. joyce
{"title":"Kuranishi spaces as a 2-category","authors":"D. joyce","doi":"10.1090/surv/237/03","DOIUrl":null,"url":null,"abstract":"This is a survey of the author's in-progress book arXiv:1409.6908. 'Kuranishi spaces' were introduced in the work of Fukaya, Oh, Ohta and Ono in symplectic geometry (see e.g. arXiv:1503.07631), as the geometric structure on moduli spaces of $J$-holomorphic curves. We propose a new definition of Kuranishi space, which has the nice property that they form a 2-category $\\bf Kur$. Thus the homotopy category Ho$({\\bf Kur})$ is an ordinary category of Kuranishi spaces. \nAny Fukaya-Oh-Ohta-Ono (FOOO) Kuranishi space $\\bf X$ can be made into a compact Kuranishi space $\\bf X'$ uniquely up to equivalence in $\\bf Kur$ (that is, up to isomorphism in Ho$({\\bf Kur})$), and conversely any compact Kuranishi space $\\bf X'$ comes from some (nonunique) FOOO Kuranishi space $\\bf X$. So FOOO Kuranishi spaces are equivalent to ours at one level, but our definition has better categorical properties. The same holds for McDuff and Wehrheim's 'Kuranishi atlases' in arXiv:1508.01556. \nUsing results of Yang on polyfolds and Kuranishi spaces surveyed in arXiv:1510.06849, a compact topological space $X$ with a 'polyfold Fredholm structure' in the sense of Hofer, Wysocki and Zehnder (see e.g. arXiv:1407.3185) can be made into a Kuranishi space $\\bf X$ uniquely up to equivalence in $\\bf Kur$. \nOur Kuranishi spaces are based on the author's theory of Derived Differential Geometry (see e.g. arXiv:1206.4207), the study of classes of derived manifolds and orbifolds that we call 'd-manifolds' and 'd-orbifolds'. There is an equivalence of 2-categories ${\\bf Kur}\\simeq{\\bf dOrb}$, where $\\bf dOrb$ is the 2-category of d-orbifolds. So Kuranishi spaces are really a form of derived orbifold. \nWe discuss the differential geometry of Kuranishi spaces, and the author's programme for applying these ideas in symplectic geometry.","PeriodicalId":422349,"journal":{"name":"Virtual Fundamental Cycles in Symplectic\n Topology","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Fundamental Cycles in Symplectic\n Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/surv/237/03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This is a survey of the author's in-progress book arXiv:1409.6908. 'Kuranishi spaces' were introduced in the work of Fukaya, Oh, Ohta and Ono in symplectic geometry (see e.g. arXiv:1503.07631), as the geometric structure on moduli spaces of $J$-holomorphic curves. We propose a new definition of Kuranishi space, which has the nice property that they form a 2-category $\bf Kur$. Thus the homotopy category Ho$({\bf Kur})$ is an ordinary category of Kuranishi spaces. Any Fukaya-Oh-Ohta-Ono (FOOO) Kuranishi space $\bf X$ can be made into a compact Kuranishi space $\bf X'$ uniquely up to equivalence in $\bf Kur$ (that is, up to isomorphism in Ho$({\bf Kur})$), and conversely any compact Kuranishi space $\bf X'$ comes from some (nonunique) FOOO Kuranishi space $\bf X$. So FOOO Kuranishi spaces are equivalent to ours at one level, but our definition has better categorical properties. The same holds for McDuff and Wehrheim's 'Kuranishi atlases' in arXiv:1508.01556. Using results of Yang on polyfolds and Kuranishi spaces surveyed in arXiv:1510.06849, a compact topological space $X$ with a 'polyfold Fredholm structure' in the sense of Hofer, Wysocki and Zehnder (see e.g. arXiv:1407.3185) can be made into a Kuranishi space $\bf X$ uniquely up to equivalence in $\bf Kur$. Our Kuranishi spaces are based on the author's theory of Derived Differential Geometry (see e.g. arXiv:1206.4207), the study of classes of derived manifolds and orbifolds that we call 'd-manifolds' and 'd-orbifolds'. There is an equivalence of 2-categories ${\bf Kur}\simeq{\bf dOrb}$, where $\bf dOrb$ is the 2-category of d-orbifolds. So Kuranishi spaces are really a form of derived orbifold. We discuss the differential geometry of Kuranishi spaces, and the author's programme for applying these ideas in symplectic geometry.
Kuranishi空间作为2范畴
这是对作者正在进行的书arXiv:1409.6908的调查。“Kuranishi空间”是在Fukaya, Oh, Ohta和Ono的辛几何(参见arXiv:1503.07631)的工作中引入的,作为$J$ -全纯曲线模空间上的几何结构。我们提出了Kuranishi空间的一个新定义,它有一个很好的性质,即它们构成一个2类$\bf Kur$。因此同伦范畴Ho $({\bf Kur})$是Kuranishi空间的普通范畴。任何Fukaya-Oh-Ohta-Ono (FOOO) Kuranishi空间$\bf X$都可以构成一个紧致Kuranishi空间$\bf X'$,唯一地达到$\bf Kur$中的等价(即,在Ho $({\bf Kur})$中达到同构),反过来,任何紧致Kuranishi空间$\bf X'$来自某个(非唯一的)FOOO Kuranishi空间$\bf X$。所以foo Kuranishi空间在一个层面上和我们的是等价的,但是我们的定义有更好的分类性质。这同样适用于McDuff和wehheim在arXiv:1508.01556中的“Kuranishi地图集”。利用在arXiv:1510.06849中调查的Yang关于多折和Kuranishi空间的结果,一个具有Hofer, Wysocki和Zehnder意义上的“多折Fredholm结构”的紧致拓扑空间$X$(参见例如arXiv:1407.3185)可以构成一个Kuranishi空间$\bf X$,唯一地达到$\bf Kur$中的等价。我们的Kuranishi空间是基于作者的派生微分几何理论(参见arXiv:1206.4207),我们称之为“d流形”和“d流形”的派生流形和轨道的研究。有一个等价的2类${\bf Kur}\simeq{\bf dOrb}$,其中$\bf dOrb$是d-轨道的2类。所以Kuranishi空间实际上是派生轨道的一种形式。我们讨论了Kuranishi空间的微分几何,以及作者在辛几何中应用这些思想的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信