Dmytro Kotovenko, Pingchuan Ma, Timo Milbich, B. Ommer
{"title":"Cross-Image-Attention for Conditional Embeddings in Deep Metric Learning","authors":"Dmytro Kotovenko, Pingchuan Ma, Timo Milbich, B. Ommer","doi":"10.1109/CVPR52729.2023.01065","DOIUrl":null,"url":null,"abstract":"Learning compact image embeddings that yield seman-tic similarities between images and that generalize to un-seen test classes, is at the core of deep metric learning (DML). Finding a mapping from a rich, localized image feature map onto a compact embedding vector is challenging: Although similarity emerges between tuples of images, DML approaches marginalize out information in an individ-ual image before considering another image to which simi-larity is to be computed. Instead, we propose during training to condition the em-bedding of an image on the image we want to compare it to. Rather than embedding by a simple pooling as in standard DML, we use cross-attention so that one image can iden-tify relevant features in the other image. Consequently, the attention mechanism establishes a hierarchy of conditional embeddings that gradually incorporates information about the tuple to steer the representation of an individual image. The cross-attention layers bridge the gap between the origi-nal unconditional embedding and the final similarity and al-low backpropagtion to update encodings more directly than through a lossy pooling layer. At test time we use the re-sulting improved unconditional embeddings, thus requiring no additional parameters or computational overhead. Ex-periments on established DML benchmarks show that our cross-attention conditional embedding during training im-proves the underlying standard DML pipeline significantly so that it outperforms the state-of-the-art.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"2003 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Learning compact image embeddings that yield seman-tic similarities between images and that generalize to un-seen test classes, is at the core of deep metric learning (DML). Finding a mapping from a rich, localized image feature map onto a compact embedding vector is challenging: Although similarity emerges between tuples of images, DML approaches marginalize out information in an individ-ual image before considering another image to which simi-larity is to be computed. Instead, we propose during training to condition the em-bedding of an image on the image we want to compare it to. Rather than embedding by a simple pooling as in standard DML, we use cross-attention so that one image can iden-tify relevant features in the other image. Consequently, the attention mechanism establishes a hierarchy of conditional embeddings that gradually incorporates information about the tuple to steer the representation of an individual image. The cross-attention layers bridge the gap between the origi-nal unconditional embedding and the final similarity and al-low backpropagtion to update encodings more directly than through a lossy pooling layer. At test time we use the re-sulting improved unconditional embeddings, thus requiring no additional parameters or computational overhead. Ex-periments on established DML benchmarks show that our cross-attention conditional embedding during training im-proves the underlying standard DML pipeline significantly so that it outperforms the state-of-the-art.