Artificial Neural Network Approach for Fault Recognition in a Wastewater Treatment Process

M. Miron, L. Frangu, S. Caraman, L. Luca
{"title":"Artificial Neural Network Approach for Fault Recognition in a Wastewater Treatment Process","authors":"M. Miron, L. Frangu, S. Caraman, L. Luca","doi":"10.1109/ICSTCC.2018.8540694","DOIUrl":null,"url":null,"abstract":"The paper deals with fault detection and recognition for WWTP (Wastewater Treatment Plant). The chosen classifier is a feed-forward neural network. Its input is a high-size vector of measured variables, rather than a small-size compressed feature vector. The output of the network points to the recognized fault class. The test was performed on a simulated WWTP, disturbed by 6 different types of faults (sensors and actuators). The results of the test proved a good ability of the neural network to recognize the faults, in 97.2% of the analysed cases.","PeriodicalId":308427,"journal":{"name":"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)","volume":"155 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2018.8540694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper deals with fault detection and recognition for WWTP (Wastewater Treatment Plant). The chosen classifier is a feed-forward neural network. Its input is a high-size vector of measured variables, rather than a small-size compressed feature vector. The output of the network points to the recognized fault class. The test was performed on a simulated WWTP, disturbed by 6 different types of faults (sensors and actuators). The results of the test proved a good ability of the neural network to recognize the faults, in 97.2% of the analysed cases.
污水处理过程故障识别的人工神经网络方法
本文研究了污水处理厂的故障检测与识别问题。所选择的分类器是前馈神经网络。它的输入是测量变量的大尺寸向量,而不是小尺寸压缩特征向量。网络的输出指向已识别的故障类别。测试是在一个模拟的污水处理厂进行的,受6种不同类型的故障(传感器和执行器)的干扰。测试结果表明,神经网络对故障的识别能力较好,对97.2%的分析案例有较好的识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信