Helicobacter pylori infection detection from gastric X-ray images using KLFDA-based decision fusion

Kenta Ishihara, Takahiro Ogawa, M. Haseyama
{"title":"Helicobacter pylori infection detection from gastric X-ray images using KLFDA-based decision fusion","authors":"Kenta Ishihara, Takahiro Ogawa, M. Haseyama","doi":"10.1109/GCCE.2015.7398563","DOIUrl":null,"url":null,"abstract":"This paper presents the performance improvement of Helicobacter pylori (H. pylori) infection detection using Kernel Local Fisher Discriminant Analysis (KLFDA)-based decision fusion. As the biggest contribution of this paper, the proposed method extracts more discriminative features based on KLFDA for the decision fusion. Since the decision fusion employed in this paper can consider not only the detection results but also the visual features, by calculating more discriminative features via KLFDA, more accurate decision fusion becomes feasible. Furthermore, experimental results show the effectiveness of the proposed method.","PeriodicalId":363743,"journal":{"name":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2015.7398563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the performance improvement of Helicobacter pylori (H. pylori) infection detection using Kernel Local Fisher Discriminant Analysis (KLFDA)-based decision fusion. As the biggest contribution of this paper, the proposed method extracts more discriminative features based on KLFDA for the decision fusion. Since the decision fusion employed in this paper can consider not only the detection results but also the visual features, by calculating more discriminative features via KLFDA, more accurate decision fusion becomes feasible. Furthermore, experimental results show the effectiveness of the proposed method.
基于klfda的决策融合检测胃x线图像幽门螺杆菌感染
提出了基于核局部Fisher判别分析(Kernel Local Fisher Discriminant Analysis, KLFDA)的决策融合方法,提高了幽门螺杆菌(Helicobacter pylori)感染检测的性能。本文最大的贡献是基于KLFDA提取更多的判别特征进行决策融合。由于本文采用的决策融合不仅考虑检测结果,而且考虑视觉特征,因此通过KLFDA计算更多的判别特征,使得更准确的决策融合成为可能。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信