Sub-band modulation spectrum compensation for robust speech recognition

Wen-hsiang Tu, Sheng-Yuan Huang, J. Hung
{"title":"Sub-band modulation spectrum compensation for robust speech recognition","authors":"Wen-hsiang Tu, Sheng-Yuan Huang, J. Hung","doi":"10.1109/ASRU.2009.5373506","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel scheme in performing feature statistics normalization techniques for robust speech recognition. In the proposed approach, the processed temporal-domain feature sequence is first converted into the modulation spectral domain. The magnitude part of the modulation spectrum is decomposed into non-uniform sub-band segments, and then each sub-band segment is individually processed by the well-known normalization methods, like mean normalization (MN), mean and variance normalization (MVN) and histogram equalization (HEQ). Finally, we reconstruct the feature stream with all the modified sub-band magnitude spectral segments and the original phase spectrum using the inverse DFT. With this process, the components that correspond to more important modulation spectral bands in the feature sequence can be processed separately. For the Aurora-2 clean-condition training task, the new proposed sub-band spectral MVN and HEQ provide relative error rate reductions of 18.66% and 23.58% over the conventional temporal MVN and HEQ, respectively.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper proposes a novel scheme in performing feature statistics normalization techniques for robust speech recognition. In the proposed approach, the processed temporal-domain feature sequence is first converted into the modulation spectral domain. The magnitude part of the modulation spectrum is decomposed into non-uniform sub-band segments, and then each sub-band segment is individually processed by the well-known normalization methods, like mean normalization (MN), mean and variance normalization (MVN) and histogram equalization (HEQ). Finally, we reconstruct the feature stream with all the modified sub-band magnitude spectral segments and the original phase spectrum using the inverse DFT. With this process, the components that correspond to more important modulation spectral bands in the feature sequence can be processed separately. For the Aurora-2 clean-condition training task, the new proposed sub-band spectral MVN and HEQ provide relative error rate reductions of 18.66% and 23.58% over the conventional temporal MVN and HEQ, respectively.
鲁棒语音识别的子带调制频谱补偿
本文提出了一种基于特征统计归一化的鲁棒语音识别新方案。在该方法中,首先将处理后的时域特征序列转换为调制谱域。将调制频谱的幅度部分分解为非均匀的子带段,然后分别采用均值归一化(MN)、均值方差归一化(MVN)和直方图均衡(HEQ)等常用归一化方法对每个子带段进行处理。最后,利用逆DFT将所有修改后的子带幅度谱段和原始相位谱重构为特征流。利用该方法,可以对特征序列中更重要的调制谱带对应的分量进行单独处理。对于“极光-2”清洁条件训练任务,新提出的子波段光谱MVN和HEQ比传统的时间MVN和HEQ分别降低了18.66%和23.58%的相对错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信