{"title":"Customer-Base Analysis in a Discrete-Time Noncontractual Setting","authors":"P. Fader, Bruce G. S. Hardie, J. Shang","doi":"10.2139/ssrn.1373469","DOIUrl":null,"url":null,"abstract":"Many businesses track repeat transactions on a discrete-time basis. These include (1) companies for whom transactions can only occur at fixed regular intervals, (2) firms that frequently associate transactions with specific events (e.g., a charity that records whether supporters respond to a particular appeal), and (3) organizations that choose to utilize discrete reporting periods even though the transactions can occur at any time. Furthermore, many of these businesses operate in a noncontractual setting, so they have a difficult time differentiating between those customers who have ended their relationship with the firm versus those who are in the midst of a long hiatus between transactions. We develop a model to predict future purchasing patterns for a customer base that can be described by these structural characteristics. Our beta-geometric/beta-Bernoulli (BG/BB) model captures both of the underlying behavioral processes (i.e., customers' purchasing while “alive” and time until each customer permanently “dies”). The model is easy to implement in a standard spreadsheet environment and yields relatively simple closed-form expressions for the expected number of future transactions conditional on past observed behavior (and other quantities of managerial interest). We apply this discrete-time analog of the well-known Pareto/NBD model to a data set on donations made by the supporters of a nonprofit organization located in the midwestern United States. Our analysis demonstrates the excellent ability of the BG/BB model to describe and predict the future behavior of a customer base.","PeriodicalId":344096,"journal":{"name":"Qnt Mkt: Measurement & Data Analysis (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qnt Mkt: Measurement & Data Analysis (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1373469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142
Abstract
Many businesses track repeat transactions on a discrete-time basis. These include (1) companies for whom transactions can only occur at fixed regular intervals, (2) firms that frequently associate transactions with specific events (e.g., a charity that records whether supporters respond to a particular appeal), and (3) organizations that choose to utilize discrete reporting periods even though the transactions can occur at any time. Furthermore, many of these businesses operate in a noncontractual setting, so they have a difficult time differentiating between those customers who have ended their relationship with the firm versus those who are in the midst of a long hiatus between transactions. We develop a model to predict future purchasing patterns for a customer base that can be described by these structural characteristics. Our beta-geometric/beta-Bernoulli (BG/BB) model captures both of the underlying behavioral processes (i.e., customers' purchasing while “alive” and time until each customer permanently “dies”). The model is easy to implement in a standard spreadsheet environment and yields relatively simple closed-form expressions for the expected number of future transactions conditional on past observed behavior (and other quantities of managerial interest). We apply this discrete-time analog of the well-known Pareto/NBD model to a data set on donations made by the supporters of a nonprofit organization located in the midwestern United States. Our analysis demonstrates the excellent ability of the BG/BB model to describe and predict the future behavior of a customer base.