A Simple Neuro-Fuzzy Controller for Car-Like Robot Navigation Avoiding Obstacles

I. Baturone, A. Gersnoviez
{"title":"A Simple Neuro-Fuzzy Controller for Car-Like Robot Navigation Avoiding Obstacles","authors":"I. Baturone, A. Gersnoviez","doi":"10.1109/FUZZY.2007.4295621","DOIUrl":null,"url":null,"abstract":"This paper describes how the combination of neuro-fuzzy techniques with geometric analysis offers a good trade-off between purely heuristics and purely physical approaches when solving the problem of car-like robot navigation. The controller described, which follows a reactive technique, generates trajectories of near-minimal lengths when no obstacles are detected and, in presence of obstacles, generates minimum deviations from them. All these reference paths meet the kinematic constraints of car-like robots and take into account dynamic issues. Besides its efficiency, the proposed controller is very simple and linguistically interpretable. The whole controller has been designed and verified by using the CAD tools of the Xfuzzy environment.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper describes how the combination of neuro-fuzzy techniques with geometric analysis offers a good trade-off between purely heuristics and purely physical approaches when solving the problem of car-like robot navigation. The controller described, which follows a reactive technique, generates trajectories of near-minimal lengths when no obstacles are detected and, in presence of obstacles, generates minimum deviations from them. All these reference paths meet the kinematic constraints of car-like robots and take into account dynamic issues. Besides its efficiency, the proposed controller is very simple and linguistically interpretable. The whole controller has been designed and verified by using the CAD tools of the Xfuzzy environment.
类车机器人避障导航的简单神经模糊控制器
本文描述了如何将神经模糊技术与几何分析相结合,在解决类车机器人导航问题时,在纯启发式和纯物理方法之间提供了一个很好的权衡。所描述的控制器遵循反应技术,在没有检测到障碍物的情况下产生接近最小长度的轨迹,并且在存在障碍物的情况下产生最小的偏离。这些参考路径都满足类车机器人的运动学约束,并考虑了动力学问题。除了它的效率,所提出的控制器是非常简单的和语言上可解释的。利用Xfuzzy环境下的CAD工具对整个控制器进行了设计和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信