Theoretical Analysis of Different Classifiers under Reduction Rough Data Set: A Brief Proposal

Shamim Ripon, Md. Sarwar Kamal, S. Hossain, N. Dey
{"title":"Theoretical Analysis of Different Classifiers under Reduction Rough Data Set: A Brief Proposal","authors":"Shamim Ripon, Md. Sarwar Kamal, S. Hossain, N. Dey","doi":"10.4018/IJRSDA.2016070101","DOIUrl":null,"url":null,"abstract":"Rough set plays vital role to overcome the complexities, vagueness, uncertainty, imprecision, and incomplete data during features analysis. Classification is tested on certain dataset that maintain an exact class and review process where key attributes decide the class positions. To assess efficient and automated learning, algorithms are used over training datasets. Generally, classification is supervised learning whereas clustering is unsupervised. Classifications under mathematical models deal with mining rules and machine learning. The Objective of this work is to establish a strong theoretical and manual analysis among three popular classifier namely K-nearest neighbor K-NN, Naive Bayes and Apriori algorithm. Hybridization with rough sets among these three classifiers enables enable to address larger datasets. Performances of three classifiers have tested in absence and presence of rough sets. This work is in the phase of implementation for DNA Deoxyribonucleic Acid datasets and it will design automated system to assess classifier under machine learning environment.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2016070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Rough set plays vital role to overcome the complexities, vagueness, uncertainty, imprecision, and incomplete data during features analysis. Classification is tested on certain dataset that maintain an exact class and review process where key attributes decide the class positions. To assess efficient and automated learning, algorithms are used over training datasets. Generally, classification is supervised learning whereas clustering is unsupervised. Classifications under mathematical models deal with mining rules and machine learning. The Objective of this work is to establish a strong theoretical and manual analysis among three popular classifier namely K-nearest neighbor K-NN, Naive Bayes and Apriori algorithm. Hybridization with rough sets among these three classifiers enables enable to address larger datasets. Performances of three classifiers have tested in absence and presence of rough sets. This work is in the phase of implementation for DNA Deoxyribonucleic Acid datasets and it will design automated system to assess classifier under machine learning environment.
简约粗糙数据集下不同分类器的理论分析
在特征分析过程中,粗糙集对于克服数据的复杂性、模糊性、不确定性、不精确性和不完全性起着至关重要的作用。在特定的数据集上测试分类,这些数据集维护一个精确的类和审查过程,其中关键属性决定了类的位置。为了评估高效和自动化的学习,算法被用于训练数据集。一般来说,分类是监督学习,而聚类是无监督学习。数学模型下的分类处理挖掘规则和机器学习。本工作的目的是在三种流行的分类器即k近邻K-NN,朴素贝叶斯和Apriori算法之间建立强大的理论和人工分析。在这三种分类器中混合使用粗糙集可以处理更大的数据集。测试了三种分类器在不存在粗糙集和存在粗糙集情况下的性能。这项工作正处于DNA脱氧核糖核酸数据集的实施阶段,它将设计自动化系统来评估机器学习环境下的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信