A Cloud Framework for Parameter Sweeping Data Mining Applications

F. Marozzo, D. Talia, Paolo Trunfio
{"title":"A Cloud Framework for Parameter Sweeping Data Mining Applications","authors":"F. Marozzo, D. Talia, Paolo Trunfio","doi":"10.1109/CloudCom.2011.56","DOIUrl":null,"url":null,"abstract":"Data mining techniques are used in many application areas to extract useful knowledge from large datasets. Very often, parameter sweeping is used in data mining applications to explore the effects produced on the data analysis result by different values of the algorithm parameters. Parameter sweeping applications can be highly computing demanding, since the number of single tasks to be executed increases with the number of swept parameters and the range of their values. Cloud technologies can be effectively exploited to provide end-users with the computing and storage resources, and the execution mechanisms needed to efficiently run this class of applications. In this paper, we present a Data Mining Cloud App framework that supports the execution of parameter sweeping data mining applications on a Cloud. The framework has been implemented using the Windows Azure platform, and evaluated through a set of parameter sweeping clustering and classification applications. The experimental results demonstrate the effectiveness of the proposed framework, as well as the scalability that can be achieved through the parallel execution of parameter sweeping applications on a pool of virtual servers.","PeriodicalId":427190,"journal":{"name":"2011 IEEE Third International Conference on Cloud Computing Technology and Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Third International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2011.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Data mining techniques are used in many application areas to extract useful knowledge from large datasets. Very often, parameter sweeping is used in data mining applications to explore the effects produced on the data analysis result by different values of the algorithm parameters. Parameter sweeping applications can be highly computing demanding, since the number of single tasks to be executed increases with the number of swept parameters and the range of their values. Cloud technologies can be effectively exploited to provide end-users with the computing and storage resources, and the execution mechanisms needed to efficiently run this class of applications. In this paper, we present a Data Mining Cloud App framework that supports the execution of parameter sweeping data mining applications on a Cloud. The framework has been implemented using the Windows Azure platform, and evaluated through a set of parameter sweeping clustering and classification applications. The experimental results demonstrate the effectiveness of the proposed framework, as well as the scalability that can be achieved through the parallel execution of parameter sweeping applications on a pool of virtual servers.
参数扫描数据挖掘应用的云框架
数据挖掘技术在许多应用领域被用于从大型数据集中提取有用的知识。在数据挖掘应用中,经常使用参数扫描来探索算法参数的不同取值对数据分析结果的影响。参数扫描应用程序可能对计算有很高的要求,因为要执行的单个任务的数量随着扫描参数的数量及其值的范围的增加而增加。可以有效地利用云技术为最终用户提供计算和存储资源,以及有效运行这类应用程序所需的执行机制。在本文中,我们提出了一个数据挖掘云应用程序框架,它支持在云上执行参数扫描数据挖掘应用程序。该框架已在Windows Azure平台上实现,并通过一组参数扫描聚类和分类应用程序进行了评估。实验结果证明了该框架的有效性,以及通过在虚拟服务器池上并行执行参数扫描应用程序可以实现的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信