Human interaction recognition in the wild: Analyzing trajectory clustering from multiple-instance-learning perspective

Bo Zhang, Paolo Rota, N. Conci, F. D. Natale
{"title":"Human interaction recognition in the wild: Analyzing trajectory clustering from multiple-instance-learning perspective","authors":"Bo Zhang, Paolo Rota, N. Conci, F. D. Natale","doi":"10.1109/ICME.2015.7177480","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework to recognize complex human interactions. First, we adopt trajectories to represent human motion in a video. Then, the extracted trajectories are clustered into different groups (named as local motion patterns) using the coherent filtering algorithm. As trajectories within the same group exhibit similar motion properties (i.e., velocity, direction), we adopt the histogram of large-displacement optical flow (denoted as HO-LDOF) as the group motion feature vector. Thus, each video can be briefly represented by a collection of local motion patterns that are described by the HO-LDOF. Finally, classification is achieved using the citation-KNN, which is a typical multiple-instance-learning algorithm. Experimental results on the TV human interaction dataset and the UT human interaction dataset demonstrate the applicability of our method.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a framework to recognize complex human interactions. First, we adopt trajectories to represent human motion in a video. Then, the extracted trajectories are clustered into different groups (named as local motion patterns) using the coherent filtering algorithm. As trajectories within the same group exhibit similar motion properties (i.e., velocity, direction), we adopt the histogram of large-displacement optical flow (denoted as HO-LDOF) as the group motion feature vector. Thus, each video can be briefly represented by a collection of local motion patterns that are described by the HO-LDOF. Finally, classification is achieved using the citation-KNN, which is a typical multiple-instance-learning algorithm. Experimental results on the TV human interaction dataset and the UT human interaction dataset demonstrate the applicability of our method.
野外人类交互识别:从多实例学习的角度分析轨迹聚类
在本文中,我们提出了一个框架来识别复杂的人类互动。首先,我们采用轨迹来表示视频中的人体运动。然后,使用相干滤波算法将提取的轨迹聚类成不同的组(称为局部运动模式)。由于同一组内的轨迹具有相似的运动特性(即速度、方向),因此我们采用大位移光流直方图(HO-LDOF)作为组运动特征向量。因此,每个视频可以简单地表示为由HO-LDOF描述的局部运动模式的集合。最后,利用一种典型的多实例学习算法——引用- knn算法实现分类。在TV人机交互数据集和UT人机交互数据集上的实验结果表明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信