Investigating Lexical Sharing in Multilingual Machine Translation for Indian Languages

Sonal Sannigrahi, Rachel Bawden
{"title":"Investigating Lexical Sharing in Multilingual Machine Translation for Indian Languages","authors":"Sonal Sannigrahi, Rachel Bawden","doi":"10.48550/arXiv.2305.03207","DOIUrl":null,"url":null,"abstract":"Multilingual language models have shown impressive cross-lingual transfer ability across a diverse set of languages and tasks. To improve the cross-lingual ability of these models, some strategies include transliteration and finer-grained segmentation into characters as opposed to subwords. In this work, we investigate lexical sharing in multilingual machine translation (MT) from Hindi, Gujarati, Nepali into English. We explore the trade-offs that exist in translation performance between data sampling and vocabulary size, and we explore whether transliteration is useful in encouraging cross-script generalisation. We also verify how the different settings generalise to unseen languages (Marathi and Bengali). We find that transliteration does not give pronounced improvements and our analysis suggests that our multilingual MT models trained on original scripts are already robust to cross-script differences even for relatively low-resource languages.","PeriodicalId":137211,"journal":{"name":"European Association for Machine Translation Conferences/Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Association for Machine Translation Conferences/Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.03207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multilingual language models have shown impressive cross-lingual transfer ability across a diverse set of languages and tasks. To improve the cross-lingual ability of these models, some strategies include transliteration and finer-grained segmentation into characters as opposed to subwords. In this work, we investigate lexical sharing in multilingual machine translation (MT) from Hindi, Gujarati, Nepali into English. We explore the trade-offs that exist in translation performance between data sampling and vocabulary size, and we explore whether transliteration is useful in encouraging cross-script generalisation. We also verify how the different settings generalise to unseen languages (Marathi and Bengali). We find that transliteration does not give pronounced improvements and our analysis suggests that our multilingual MT models trained on original scripts are already robust to cross-script differences even for relatively low-resource languages.
印度语多语言机器翻译中的词汇共享研究
多语言模型显示了跨多种语言和任务的跨语言迁移能力。为了提高这些模型的跨语言能力,一些策略包括音译和更细粒度的字符分割,而不是子词。在这项工作中,我们研究了印地语、古吉拉特语、尼泊尔语到英语的多语言机器翻译(MT)中的词汇共享。我们探讨了数据采样和词汇量之间存在的翻译性能权衡,并探讨了音译是否有助于鼓励跨脚本泛化。我们还验证了不同的设置如何推广到看不见的语言(马拉地语和孟加拉语)。我们发现音译并没有带来明显的改进,我们的分析表明,我们在原始脚本上训练的多语言机器翻译模型即使对于资源相对较少的语言,也已经对跨脚本差异具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信